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Abstract: Two objectives guided this research. First, this study examined how well teachers’ 
tracking decisions contribute to the homogenization of their students’ achievements. Second, 
the study explored whether teachers’ tracking decisions would be outperformed in 
homogenizing the students’ achievements by statistical models of tracking decisions. These 
models were akin to teachers’ decisions in that they were based on the same information 
teachers are supposed to use when making tracking decisions. It was found that the assignments 
of students to the different tracks made either by teachers or by the models allowed for the 
homogenization of the students’ achievements for both test scores and school marks. Moreover, 
the models’ simulations of tracking decisions were more effective in the homogenization of 
achievement than were the tracking decisions, if the students assigned to the different tracks 
were at the center of the achievement distribution. For the remaining students, there was no 
significant difference found between teachers’ tracking decisions and the models’ simulations 
thereof. The reason why algorithms produced more homogeneous groups was assumed to be 
due to the higher consistency of model decisions compared to teacher decisions. 
Keywords: ability grouping; tracking decisions; homogenization; secondary school; teachers; 
statistical models; Luxembourg 
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¿Pueden lo Algoritmos Homogeneizar Os Logros de los Estudiantes de Escuela 
Secundaria Mejor que las Decisiones de Seguimiento de los Docentes? 
Resumen: Dos objetivos guían esta investigación. En primer lugar, este estudio examinó qué 
tan bien las decisiones de seguimiento de los docentes contribuyen a la homogeneización de los 
logros de los estudiantes. En segundo lugar, el estudio analizó si los modelos estadísticos de 
localización tuvieron mejores resultados que las decisiones de seguimiento de los profesores 
para la homogeneización de los logros de los estudiantes. Estos modelos tenían información 
similar a las que usaban los profesores cuando toman decisiones de seguimiento. Se encontró 
que las asignaciones de los estudiantes a diferentes grupos de nivel hechas ya sea por los 
profesores o por los modelos homogeneizaron los logros de los estudiantes tanto en exámenes 
como calificaciones escolares. Por otra parte, modelos que usaban algoritmos para tomar 
decisiones de localización fueron más eficaces en la homogeneización de logros si los 
estudiantes asignados a los diferentes grupos de nivel estaban en el centro en la curva de 
distribución de logros. Para el resto de los estudiantes, no hubo diferencias significativas entre 
las decisiones docentes y los modelos. La razón por la cual los modelos que usaron algoritmos 
produjeron grupos más homogéneos fue dada la mayor consistencia en los modelos de 
decisiones en comparación con las decisiones de los maestros. 
Palabras clave: grupos de nivel; seguimiento de decisiones; homogeneización; escuela 
secundaria; profesores; modelos estadísticos; Luxemburgo 
 
Podem Algoritmos Padronizar os Logros dos Estudantes do Ensino Médio de 
Acompanhamento Melhor que as Decisões dos Professores? 
Resumo: Dois objetivos norteiam esta pesquisa. Em primeiro lugar, este estudo analisou quão 
bem as decisões dos professores contribuem para a homogeneização desempenho dos alunos. 
Em segundo lugar, o estudo examinou se modelos estatísticos superaram as decisões dos 
professores para conseguir a homogeneização do desempenho dos alunos. Estes modelos 
tinham informações semelhantes aos utilizados pelos professores na tomada de decisões. 
Verificou-se que a localização dos alunos em diferentes grupos de nível feitas por professores ou 
por modelos de desempenho homogeneizaram os resultados dos alunos em as provas e  as 
notas. Além disso, os modelos que usaram algoritmos para decisões de localização foram mais 
eficazes na homogeneização da logros se os alunos estavam no nível médio da curva de 
distribuição de logros. Para outros alunos, não houve diferenças significativas. A razão pela qual 
os modelos de algoritmos usados resultaram em grupos mais homogêneos se deve a maior 
consistência dos modelos de decisão em comparação com as decisões dos professores. 
Palavras-chave: grupos de nível; decisões de nível; homogeneização; ensino médio; 
professores; modelos estatísticos; Luxemburgo 

Introduction 

Do algorithms assign students to different courses more effectively than teachers, when 
homogenization of achievement is desired? This article presents results of a study, which strongly 
affirm this question. 

The article is divided into three sections. The first section presents the theoretical 
background of the study according to different programs for homogenization of achievement in 
school and with respect to the teacher as a professional who is prone to making inconsistent 
judgments and decisions. The second section describes the methodology of the study at hand, 
including the measures of homogeneity that were used for the purpose of the study, and the 



Do Algoriths Homogenize Students’ Achievements 3 
 
algorithms that were derived in order to assign students to different courses. In the third section the 
results were presented and finally discussed.  

I want to make clear preferably at the beginning of this article that this study will not put 
forward arguments in favor of or against homogenization of students regarding their achievements. 
It only will be shown that if homogeneity of achievements is a pedagogical goal, one should 
contemplate the use of (mechanical) algorithms instead of mere human judgment. 

Grouping Students Into Different Tracks in Secondary School 

In many countries in Europe and beyond, the career of students is mainly determined by the 
school track they attend in secondary education. For example, students attending and successfully 
finishing the highest school track will be given the opportunity to go to a college or a university, 
whereas those who attend one of the lower tracks are usually denied access to higher education. 
Therefore, one of the most far-reaching decisions affecting students’ educational career in these 
school systems is related to grouping them into different tracks in secondary school.  

A major purpose of tracking is to homogenize classroom or track placements in terms of 
students' personal qualities, performances, or aspirations (Oakes, 1987; Rosenbaum, 1976). With 
homogenized classes, courses, or tracks, it is commonly assumed to facilitate “didactic fit”, i.e., 
adjustment of learning pace, learning materials, and method of instruction to student ability and 
concerns (Dar & Resh, 1997).  

Tracking, which is the ability-based assignment of students to different secondary-school 
tracks, is an example of the broader concept of ability grouping in school. For almost a century, 
ability grouping has been one of the most controversial issues in education. Arguments put forward 
in favor of ability grouping were in essence that grouping would allow teachers to adapt instruction 
to the needs of their students, with the possibility to provide high achievers with difficult stuff, and 
low achievers with rather simple material (cf. Slavin, 1990). In contrast, opponents of ability 
grouping argue that it is especially bad for the low achievers since they experience a slower pace and 
a lower quality of instruction (e. g., Gamoran, 1989).  

The objective of ability-grouping or tracking has been described as the stimulation of an 
improvement in regard to school achievement by more individualized and adapted educational 
methods (Slavin, 1987). Furthermore, educating a class where students have a similar achievement 
level has been seen as more efficient and less demanding for the teacher than educating a class with 
students with very heterogeneous achievement levels (Hallinan, 1994). 

Research on effects of ability grouping has generated equivocal results, as has been shown in 
comprehensive reviews from Kulik and Kulik (1987), Slavin (1990), and recently Hattie (2009). 
Whereas some researchers stress the strength of grouping for high-ability students (e. g., Fuligni, 
Eccles, & Barber, 1995), others found only small or even negative effects on academic achievement 
for both high-achievers and low-achievers (Gamoran, 1992; Slavin, 1993).  

In the United States or the United Kingdom, tracking is mainly practiced as grouping of 
students at the class or course level, while students stay in the same school. In school systems with 
hierarchical tracks, as they are common in some European countries (e.g., Germany, Luxembourg, 
Switzerland, Austria), but also in Korea, China, Brazil, Russia, and Japan, tracking does take place at 
the school level. In these school systems, students are allocated by teachers to different schools with 
different curricula and different final degrees on the basis of their achievements and interests in 
primary school. Although changing school-tracks in hierarchical systems is possible, it occurs quite 
rarely (e.g., Baumert, Trautwein & Artelt, 2003; Bellenberg, Hovestadt, & Klemm, 2004; Klapproth, 
Schaltz, & Glock, 2014). 

A recommendation or judgment made by educators, which guides the orientation towards a 
certain track, predates the actual tracking process, and is, like all human judgments, prone to error. 
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Attempts to reduce errors in human judgments come – among others – from medical and mental 
health diagnosis (cf. Grove & Meehl, 1996) where human judgments were replaced by outcomes of 
statistical models. However, the use of models for judgment or decision-making is quite scarce in 
the educational practice. 

Tracking Decisions as an Example of “Clinical Judgment” 

Given that tracking decisions are based on knowledge about students’ performance and 
inferred abilities, homogenizing school achievements through tracking decisions is an example of 
what has been called “clinical judgment” (Meehl, 1954). Clinical judgments or decisions are rather 
subjective and based on informal contemplation. In contrast, “mechanical judgment” involves a 
formal, algorithmic procedure to make a decision (e.g., Grove & Meehl, 1996). Mechanical decisions 
are often derived from models that mimic human decisions. These models entail some variables and 
rules about how to combine them. These rules apply “automatically”, that is, without intervention of 
a human decision-maker. In the 1970s, Dawes and colleagues (e.g. Dawes & Corrigan, 1974) showed 
with various variables that the correlation between the output of a model and a criterion is often 
higher than the correlation between the decision maker’s judgment and the criterion, even though 
the model is based on the behavior of the decision maker. Up to now, numerous studies have 
indicated that mechanical decisions outperform clinical decisions in a variety of domains, like 
medicine (e.g., Clarke, 1985), mental health (e.g., Goldberg, 1969), and education (e.g., Dawes, 1971). 
Once developed, the application of mechanical decisions requires no expert (e.g., teacher) judgment. 
Karelaia and Hogarth (2008) reported from a meta-analysis of more than 80 studies published 
between 1954 and 2007 that the coefficients of correlations between decisions models and external 
criteria were higher on average by .10 than the correlations between human decisions and the same 
criteria.  

The reason for the superiority of mechanical over clinical decisions was supposed to be 
predominantly up to unreliability of human decisions (Grove & Meehl, 1996). Even if judges reach 
decisions by weighting single cues, their weighting is usually inconsistent over time, thus leading to 
differences in decisions due to variations in weights. Therefore, one might speculate that tracking 
decisions would have less power for homogenization than an algorithmic combination of students’ 
attributes. This argument implies that teachers make random errors in their decisions. However, it is 
important to separate these random errors from another form of error, namely bias in teacher 
decisions, or systematic error. A large body of research indicates that teachers may not only make 
random errors in their decisions, but they make also systematic errors (e.g., Jussim, 1989; Podell & 
Soodak, 1993). Mechanical decisions might decrease random errors, but they will still be prone to 
systematic errors if the variables used for the models introduce a source of biased decisions. 

Since virtually all studies concerned with the examination of predictors of tracking decisions 
have used variants of linear regression analyses, the predominant models of tracking decisions are 
regression models. In linear regression, the variation of a criterion is explained by the variation of 
one or more predictors, without necessarily implying that there is a causal relationship between the 
predictor(s) and the criterion. The amount to which each predictor contributes to the variation of 
the criterion is expressed by regression weights. 

The Present Study 

The present study extends a previous study (Kovacs, 2013) using the same sample of 6th-
grade students in Luxembourg. In Luxembourg, tracking decisions are made by a council at the end 
of primary school in 6th grade. This council is composed of primary-school teachers, secondary-
school teachers, and school inspectors. Students are oriented to one of two major tracks that 
constitute the Luxembourgish secondary school (starting at grade 7), which can be described as an 
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academic track and a vocational track, with each track serving a unique curriculum. The tracks are 
strictly separated and often located in different schools.  

The first aim of this research was to investigate how well teachers’ tracking decisions 
contribute to the homogenization of their students’ achievements.  

The second aim of the present study was to examine whether teachers’ tracking decisions 
would be outperformed in homogenizing their students’ achievements by statistical models of 
tracking decisions. These models were akin to teachers’ decisions in that they were based on the 
same information teachers are supposed to use when making tracking decisions. The models were 
varied in regard to the weights the information was given in the models. Whereas one model was an 
optimal weight regression model (OWRM) where the weighting parameters were estimated by 
minimizing the prediction error (represented as the sum of squared differences between the 
observed and the predicted data points), the other model (EWRM) was a simplification of the 
OWRM, as this model did use equal weights for all predictors involved. With the latter model it was 
examined whether even in case of an oversimplified weighting of information the model would still 
assign students to more homogeneous tracks than teachers would do. 

When teachers make their tracking decisions, it should be quite easy for them to assign 
students to the lower track who are at the lower end of the achievement distribution, and to assign 
students to the higher track who are at the higher end of the distribution. However, students who 
show achievement scores that are near the decision criterion should require more thorough 
inspection of their achievements and might also be more likely to be assigned to the “wrong” track.  

The following rationale shall illustrate this. Suppose that teachers make decisions about 
students in a similar way as the models do that are construed to simulate the teachers’ decisions. 
Then, both models and teachers would combine student attributes as a weighted linear function. For 
example, they might base their decisions on school marks of the main subjects, and might link each 
school mark with a certain weight. The difference between the models’ weighting and the teachers’ 
weighting would be that models keep their weighting constant for all students to be judged, whereas 
teachers should (presumably unconsciously and on a random basis) vary their weights from student 
to student (Grove & Meehl, 1996). Due to this variation, the corresponding decision outcomes of 
the teachers would also vary. If the student to be judged is a low or a high achiever, variations of the 
weights should alter the numerical outcome of the decision, yet – as long as the outcome is clear 
beyond the decision criterion – the entire judgment of the teacher would not be altered. More 
concretely, if a low achiever shows school marks that are far below the class average, variation of the 
weights would not make a huge difference, so that this student is very likely to be allocated at the 
lower track. However, if the student shows school marks that are near the decision criterion, 
variations of the weights would have a much stronger impact since a higher weight might result in a 
decision for the higher track, and a lower weight for the lower track, independently of the 
achievement of the student. In contrast, since the models’ weights are constant, models of tracking 
decisions would make the same clear-cut decision for each student independently of his or her 
placement on the achievement continuum, and would assign all students with equal school marks to 
the same track. 

Since in Luxembourg the numbers of students allocated to either track are roughly the same, 
the decision criterion for teachers is likely to be located at the center of the achievement distribution. 
It was therefore examined whether the models’ tracking decisions would outperform teachers’ 
tracking decisions for students of two different areas of the achievement distribution, which were 
the center and the extremes of the distributions.  

With Hypothesis 1 it was assumed that the achievement scores of the students would be 
more homogeneous, that is, more similar to each other, when the students were grouped into 
different tracks, than when the students were ungrouped. This hypothesis might sound trivial at first 
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glance, since it appears to be obvious that grouping students according to their achievement would 
necessarily lead to a decrease of achievement heterogeneity. Yet, suppose that the teachers use much 
more information for their assignments than mere achievement data, and that these non-
achievement data are strongly weighted, than it would be possible that students who perform well 
could be assigned to the lower track, and students performing much worse could be assigned to the 
higher track.  

Additionally, according to Hypothesis 2, the models’ assignments of students to different 
tracks should be superior in homogenizing the students compared to teachers’ assignments, if the 
achievement of the students was average. However, if the students were low or high achievers, both 
models and teachers should perform equally well in homogenizing their students’ achievements. 

Method 

The Participants 

This research was part of the project “Predictive validity of school placement decisions of 
primary-school teachers in Luxembourg”, funded by grant from the Luxembourgish Fonds National 
de la Recherche. The data analyzed in this study were provided by the Luxembourgish Ministry of 
Education (Ministére de l'Education Nationale et de la Formation Professionnelle) and by the 
Luxembourgish school monitoring. The data set used included data from N = 2,825 students who 
attended grade 6 in the Luxembourgish school system in school year 2008/2009. These students 
were a representative sample of an age-cohort of 3,204 students. Correlation analyses revealed that 
there was only a loose relationship between students who were part of this study and those who 
were not with respect to the variables used for the models, all rs ≤ .06. 

51.3 % of the students were girls and 48.7 % boys. Their mean age was 12.52 years (SD = 
0.52) at the end of 6th grade in primary school.  

Unfortunately, the data did not allow for identifying the different councils making track 
recommendations, nor the teachers involved. Therefore, we could not account for differences in 
judgments due to differences between teachers, and we were not able to provide demographic data 
on the teachers. 

Measures of Homogenization of Academic Achievement (Dependent Variables) 

The tracking decisions – either made by teachers’ or simulated by algorithms derived from 
regression models – resulted in two groups of students, with each group corresponding to one track. 
Whether or not the students were more similar to each other in regard to their achievements in the 
assigned tracks, compared to the entire ungrouped sample, was examined by the variance of 
achievement data as a measure of homogeneity.   

After homogenization, the variance of achievement should be smaller than before 
homogenization. That is, after the assignment of students to the two tracks, the sum of variances of 
achievement of the students across the tracks should be smaller than the variance of achievement of 
all students prior the their assignment to different tracks. Differences in variances can be tested for 
significance by using the Bartlett test (Bartlett, 1954), which tests the null hypothesis that all k 
population variances are equal against the alternative that at least two are different. The Bartlett test 
is robust against different sample sizes, but sensitive in regard to deviations from normality of the 
distributions.  

Besides considering the variances, homogenization of students’ achievements was assessed 
by the degree of overlap that the distributions of both tracks share with each other. In case of 
perfect homogenization, all high achievers would be assigned to one track, and all low achievers 
would be assigned to the other track, with no low achievers occurring at the high achievers track, 
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and vice versa. However, this perfect segregation of students with respect to their achievements is 
hardly realistic since especially students with average achievements are more or less equally likely to 
be assigned to either track. Therefore, an overlap of the achievement distributions is likely to occur, 
and the degree of overlap might serve as an indicator of the success of homogenization. If the 
achievement distributions of the students of both tracks would overlap only marginally, then the 
homogenization would be better than if the distributions share a lot of achievement scores.  

According to Inman and Bradley (1989), the overlap (OVL) of the achievement distributions 
of both tracks is estimated by 
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and the cumulative standard normal distribution function represented by Φ. The OVL coefficient 
indicates the area which one distribution shares with the other distribution. The number of students 
n who are captured by this overlap is given by n = OVL × N.  

The means (µi) and the variances (σi
2) necessary for estimating the overlap were derived 

from two indicators of the students’ academic achievement. Firstly, the school marks of the students 
obtained in 6th grade in the subjects mathematics, German, and French were used as an indicator of 
academic achievement. Secondly, test scores were used that were obtained from standardized 
achievement tests administered in 6th grade, which comprised tasks from the curricular fields 
mathematics, German, and French. From both test scores and school marks, means and variances 
were calculated and inserted into the formula for estimating the overlap separately for test scores 
and school marks. 

Predictors (Independent Variables) 

Assigning students to different tracks should result in more homogeneous student groups. 
This assignment was done in reality by Luxembourgish teachers’ tracking decisions, or it was 
simulated by two models that resembled the teachers’ decisions. Therefore, the kind of tracking 
decision (made by teachers or models) served as the independent variable.  

Teachers’ tracking decisions.  

For each student, a tracking decision was recorded that was made by teachers organized 
within the council. The tracking decisions were coded as 1 (favoring the academic track) or 0 
(favoring the vocational track).  

Models’ simulations of tracking decisions.  
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Each model produced for each student a simulated tracking decision, based on the variables 
involved and the regression weights calculated. As with teachers’ tracking decisions, model 
“decisions” were either 1 (favoring the academic track) or 0 (favoring the vocational track).  

Statistical Models Mimicking Teachers’ Tracking Decisions 

Two models of tracking decisions were developed that resembled human-made tracking 
decisions in regard to the information teachers process in order to make the decision. There were 
two sources of knowledge that provided hints about the way teacher’s tracking decisions are made. 
The first hint stems from legal authorities, which suggest which information teachers should use 
when deciding on a recommended track. In Luxembourg, these are the students’ school marks 
obtained in the last year of primary school (in 6th grade), especially school marks in the subjects 
French, German, and mathematics, and scores of a standardized academic achievement test that is 
administered in 6th grade, assessing students’ competencies in French, German, and mathematics 
(Reding, 2006). The second hint was provided by scientific literature on predictors of tracking 
decisions. This literature shows that school marks and test scores are the predominant predictors for 
tracking decisions (e. g., Arnold, Bos, Richert, & Stubbe, 2007; Bos, Voss, Lankes, Schwippert, Thil, 
& Valtin, 2004; Klapproth, Glock, Krolak-Schwerdt, Martin & Böhmer, 2013).  

Because the tracking decision was a binary variable (vocational track versus academic track), 
the models estimated tracking decisions by using a form of a generalized linear model, which was 
logistic regression. 

The variables that were used in the models as predictors were the 6th grade school marks of 
the main subjects (German, French, and mathematics) and the test scores obtained from the 
domains German, French, and mathematics. All predictor variables were z-standardized due to their 
varying scales prior to being inserted into the regression equation. 

Logistic regression uses a transformed linear combination of predictor variables in order to 
predict the probability that an individual case will belong to one of the two given categories of the 
criterion variable: 

 

P(Yi =1) =
e c+w1xi1+w2xi2+...+wkxik( )

1+ e c+w1xi1+w2xi2+...+wkxik( )
,  (5) 

 
where P(Yi = 1) represents the probability that case i will belong to category 1, assuming that the 
same set of k cues are considered for each case. Every cue's value for case i is indicated by xi, while 
the regression weight for that cue is indicated by w, and c represents some constant. 

Optimal regression weights were calculated by minimizing the prediction error, represented 
as the sum of squared differences between the observed and the predicted data points. The cut-off 
probability value for classifying cases into predicted groups was .50. 

A second model was established which ignored the different contributions of each predictor 
variable to the prediction of the school track. Instead, this model was as simple as possible, as it 
used only equal weights (all weights were equal to 1) for each predictor variable. In order to calculate 
a logistic probability prediction based on an equal weighting of predictor variables, the predictor 
variables were summed. This summed value was then entered as the only predictor into a logistic 
regression predicting track recommendations.  

The mathematical description of the models was as follows. The dependent variable was the 
probability of being a member of the academic track (P (Yi = 1)). The logistic regression equation 
for the optimal weight regression model (OWRM) was: 
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and for the equal weight regression model (EWRM): 
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Note that both school marks and test scores were z-transformed before being inserted into the 
models. 

Variables Used in the Models (Model Input) 

The following variables were used to model human track recommendations.  

School marks in 6th grade. School marks for the subjects German, French, and 
mathematics were given as points, ranging from 0 to 60, with points below 30 representing 
insufficient achievements.  

Results of standardized achievement tests. Test scores were obtained from 
standardized achievement tests that were administered in 6th grade. These tests comprised tasks 
from the curricular fields mathematics, German, and French. Test scores were standardized such 
that the population mean was fixed to 0, and the standard deviation was set to 1. 

Results 

Table 1 displays the correlation between the tracking decisions made by the teachers and 
those simulated by the models. As can be seen, the optimal weight regression model (OWRM) 
represented the teachers’ tracking decisions more precisely than the equal weight regression model 
(EWRM). This result indicates that optimal weighting yielded a better fit between the model and the 
tracking decisions than did (arbitrary) equal weighting. 

 
Table 1 
Correlation Between the Teachers’ Tracking Decisions and Those Made by the Models 
 Teachers’ Tracking 

Decision (1) 
Tracking Decision 
Simulated by Optimal 
Weight Regression 
Model (2) 

Tracking Decision 
Simulated by Equal 
Weight Regression 
Model (3) 

(1) 1 .867*** .777*** 
(2)  1 .795*** 
 

The differences between the models and the tracking decisions were also displayed by the 
distributions of students on the different tracks. As Table 2 shows, both the teachers as well as the 
OWRM assigned more students to the vocational track than to the academic track, whereas the 
EWRM did the reverse.  
 



Education Policy Analysis Archives  Vol. 23 No. 62 10 
 
Table 2 
Distribution of Track Recommendations Made by Teachers and the Two Models 
Recommendation for Teachers OLRM EWRM 
Academic Track 43.9 % (n = 1240) 43.4 % (n = 1226) 54.8 % (n = 1548) 
Vocational Track 56.1 % (n = 1585) 56.6 % (n = 1599) 45.2 % (n = 1277) 

 
The achievement measures of all students who were assigned to the vocational track, and of 

all students who were assigned to the academic track were then used to calculate the variance of the 
scores as an indicator of homogeneity. Table 3 depicts the results obtained from each model and 
from the tracking decisions of the teachers. 
 
Table 3 
Measures of Homogeneity for the Entire Sample 
(A) Test scores 

 Mean  Variance  Sum of 
Variances 

 Track V Track A Track V Track A  
Tracking 
decision 

-0.336 0.736 0.236 0.194 0.430 

OWRM -0.343 0.747 0.213 0.175 0.388 
EWRM -0.468 0.623 0.177 0.209 0.386 

 (B) School marks 
 Mean  Variance  Sum of 

Variances 
 Track V Track A Track V Track A  

Tracking 
decision 

41.429 52.207 26.664 9.531 36.195 

OWRM 41.271 52.361 24.744 7.789 32.533 
EWRM 39.911 51.171 20.951 12.271 33.222 

Note. Upper table: means and variances obtained from test scores; lower table: means and variances obtained 
from school marks. Track V means vocational track, Track A means academic track. OWRM stands for the 
optimal weight regression model, EWRM stands for the equal weight regression model. 
 

The table shows that the tracking decisions and the OWRM produced very similar means 
and variances, whereas the variances produced by the EWRM were smaller for the vocational track 
and larger for the academic track with both test scores and school marks. However, when the 
variances were summed up across the tracks, both models resulted in more homogeneous 
achievements compared to the teachers’ tracking decisions.  

In order to test Hypothesis 1, the variance of the test scores and the variance of the school 
marks for all students before the grouping was conducted were estimated. For the entire sample (N 
= 2,825), the mean and the variance of the test scores were MTest = 0.136 and s2

Test = 0.501, and for 
the school marks MMarks = 46.052 and s2

Marks = 47.774, respectively. Compared to the variances 
before the grouping (see Table 3), the grouping of the students actually led to a decrease of the 
variances, independently of whether the grouping was done by the teachers or by statistical models.  

To test Hypothesis 1, the Bartlett test was used. With the Bartlett test it was examined 
whether there was a significant difference between the sum of the variances across the tracks and 
the variance of the entire sample, separately for each achievement measure. The corresponding null 
hypothesis stated that all variances were of the same amount. This means that if one of the four 
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variances was significantly different from any other variance, the Bartlett test would produce a 
significant value.  

The Bartlett test is a Chi-square statistic, which is defined as follows: 
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with s2 being the pooled variance of the samples, si

2 being the variance within each sample, p being 
the number of samples compared, and ni being the size of each sample. 

For the test scores as an indicator of homogeneity, Chi-square resulted in χ2 (df = 3) = 
56.182, p < .001, indicating that the variance of the entire sample was significantly larger than any 
other variance. Significant differences between the variances were also obtained for the school 
marks, χ2 (df = 3) = 138.761, p < .001. Thus, Hypothesis 1 was confirmed since the homogeneity of 
achievement was substantially increased after the tracking compared to prior to the tracking.  

The next step was the assessment of homogenization in different areas of the achievement 
scores distributions. With both school marks and test scores, the score distributions were divided 
into four equal-sized parts. After that, the students of the outer parts of the distributions (i.e., the 
low and the high achievers) were put together to one group, and the remaining students (i.e., the 
average achievers) formed the second group.  

According to Hypothesis 2, the degree of homogenization with students showing average 
achievements should be stronger when the assignment of the students to the different tracks was 
made by the models instead of by the tracking decisions. However, if the students were low or high 
achievers, both models and teachers should perform equally well in homogenizing the students’ 
achievements. To test this hypothesis, the overlap of the distributions as an indicator of 
homogeneity was assessed by the formula proposed by Inman and Bradley (1989). Table 4 shows 
the results.  
 
Table 4 
Degree of Overlap (OVL) of the Distributions of Achievement Scores 

 Low or High Achievers Average Achievers 
 Test Scores School Marks Test Scores School Marks 

Tracking 
Decision 

0.009 0.002 0.462 0.325 

OWRM 
 

0.004 0.001 0.373 0.196 

EWRM 
 

0.005 0.001 0.332 0.266 

Note. OWRM stands for the optimal weight regression model, EWRM stands for the equal weight regression 
model. 
 

As expected, low and high achievers were placed into the tracks with only a marginal overlap 
between the achievement distributions, which shows that both the teachers and the models could 
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easily assign each student to a track that fits her or his academic capabilities. In stark contrast, 
students showing rather average achievements were classified with a much stronger degree of 
overlap, which points to the fact that the tracks contained students showing quite diverse 
achievements, and that the achievements of the students were similar between the tracks. 

Differences between the various degrees of overlap were tested for significance by 
transforming the areas of overlapping distributions into the number of students who were captured 
by the overlap according to n = OVL × N. The overlap produced by the tracking decisions were 
compared with the overlap produced by each model, and the models were as well compared with 
each other, separately for low or high achievers and average achievers. Thus, 12 comparisons 
resulted in total. The two-proportion z-test was used, which tests against the null hypothesis that the 
proportions of students covered by the overlap were the same between either the tracking decision 
and a model’s assignment, or between both models’ assignments. In order to adjust for alpha 
cumulation, the significance level was lowered after Bonferroni by factor 3 (resulting in α 
significance level of αadjusted = .017), since three comparison were made per area of achievement (low 
or high achievers versus average achievers) and per achievement indicator (test scores versus school 
marks).  

There were no significant differences of the overlaps for test scores and school marks 
between either decision, when the decisions were made for low and high achievers, all ps > .054. 
However, in case of average achievers, all comparisons produced significant differences. That is, not 
only were the overlaps significantly smaller when the decisions were made by the models instead of 
by the teachers (teachers’ decisions versus OWRM: zTest = 4.81, p < .001; zMarks = 7.80, p < .001; 
teachers’ decisions versus EWRM: zTest = 7.07, p < .001; zMarks = 3.42, p < .001), but the models did 
also differ among each other, with the OWRM being superior for test scores (z = 2.28, p = .011), 
and the EWRM being superior for the school marks (z = -4.42, p < .001).  

Discussion 

The objective of the present study was twofold. On the one hand, it was examined whether 
the achievement of students at the end of primary school would be more homogeneous, that is, 
more similar to each other, when the students were grouped into different tracks, than when the 
students were ungrouped. This tracking was done both by teachers as well as by statistical models 
that resembled the teachers’ tracking decisions in that they utilized similar information in order to 
assign the students to different tracks. On the other hand, it was hypothesized that the statistical 
models would be superior to the teachers in homogenizing the students’ achievements after they 
were assigned to the different tracks, if the students showed rather average achievement. However, 
both teachers and statistical models should be equally effective in homogenizing the achievement of 
students who were either on the lower or on the higher end of the achievement continuum. 

With respect to the first hypothesis, the assignments of students to the different tracks made 
either by teachers or by the models allowed for the homogenization of the students’ achievements 
for both test scores and school marks. Compared to the entire sample, the sum of variances of 
achievement for both tracks were much smaller for both test scores and school marks. Thus, 
Hypothesis 1 could be confirmed. 

Regarding the second hypothesis, it was found that the models’ simulations of tracking 
decisions were more effective in the homogenization of achievement than were the tracking 
decisions themselves. This, however, was only true if those students were assigned to the different 
tracks who were at the center of the achievement distribution and therefore supposedly near the 
decision criterion. For the remaining students, there was no significant difference found between 
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teachers’ tracking decisions and the models’ simulations thereof. Hence, Hypothesis 2 was also 
confirmed.  

Since the models differed in the way the achievement information was weighted for the 
assignment of a student to either the vocational or the academic track, it was no surprise that they 
differed also in the degree of homogenization. It was found that the equal-weight regression model 
(EWRM) was superior to the optimal-weight regression model (OWRM) when test scores served as 
indicators of achievement. However, when homogeneity was measured on the basis of school 
marks, the OWRM outperformed the EWRM. This difference was presumably due to the fact that 
in the OWRM school marks had on average larger weights than test scores, whereas in the EWRM 
all weights were equal, such that the school marks were comparatively more heavily weighted than in 
the OWRM. Hence, it appears that homogenization of a certain achievement indicator is more 
effective if this indicator is given more weight in a model than any other indicator.  

The results of this study confirm a large body of research which indicated that so-called 
mechanical judgments usually outperform “clinical” judgments in a broad variety of domains (cf. 
Grove, Zald, Lebow, Snitz, & Nelson, 2000; Meehl, 1954). Grove and colleagues (Grove et al., 2000) 
included nine studies in their meta-analyses which were concerned with comparisons of clinical and 
mechanical predictions in educational contexts, and all of these studies reported an advantage in 
favor of mechanical judgments. For the present study, it was therefore expected that teachers’ 
inconsistency that might be inherent in making tracking decisions would make models of tracking 
decisions more accurate than the tracking decisions themselves.  

What does the overlap of the achievement-scores distributions obtained from both tracks 
mean in terms of the students who were captured by the overlap? Students of one track whose 
achievements fall beyond the intersection of the distributions would show achievement scores that 
are more similar to the average score of the opposite track than to the average score of their own 
track. Hence, these students might be termed “misclassified” (cf. Klapproth, Krolak-Schwerdt, 
Hörstermann, & Martin, 2013) as they contribute more to the heterogenization than to the 
homogenization of achievements within their track.  

Should students be taught in homogenized courses or tracks? Although most experts agree 
that high-ability students tracked into homogeneous high-ability groups benefit from the tracking, 
evidence from highly controlled studies has been brought that low-ability students tracked into low-
ability groups do not (Argys, Rees, & Brewer, 1996; Duru-Bellat & Mingat, 1998; Hoffer, 1992; 
Kerckhoff, 1986). Becker and colleagues (Becker, Lüdke, Trautwein, Köller, & Baumert, 2012) 
investigated the effect of tracking in the German secondary school system and showed that students 
who attended an academic track achieved higher scores in an intelligence test than students who 
attended a vocational track, even though prior achievement and intelligence level were controlled. 
Becker and colleagues (Becker et al., 2012) attributed these differences to the higher educational 
quality of academic tracks, compared to vocational tracks. Similar results were found by Schaltz and 
Klapproth (2014) for Luxembourgish secondary schools. However, if these lower tracks were more 
stimulating, challenging and taught by well-trained teachers, there might me more gains from 
tracking for these students (Hattie, 2009). Ability-grouping is, however, not restricted to allocate 
students to different tracks. Another form of creating homogeneous learning groups is within-class 
grouping, which can be defined as the teacher’s practice of forming groups of students of similar 
ability within an individual class (Hollifield, 1987). In contrast to between-school tracking, within-
class grouping has been shown to be much more effective in regard to students’ achievements, even 
for the low-achievers (Kulik & Kulik, 1992). Thus, it seems that homogenization of students’ 
achievements might be beneficial in some instances, provided that learning materials and teaching 
are appropriately varied according to the ability levels of the students (Hattie, 2009). 
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Limitations of the Study 

Two limitations pertinent to this study can be assumed. The first one is related to the 
number of regression models that were used to simulate teachers’ tracking decisions. Since only two 
models were applied, it could be argued that these models are only special cases of the whole family 
of regression models, and it might be the case that different models would produce assignments of 
students that are inferior to the assignments made by teachers. Certainly, this argument is valid on a 
general level. However, in this study it was shown that even when a regression model was used that 
ignored the different weightings of student characteristics which were used to come to a decision 
about the track a student should be placed in, this model was more effective in homogenizing 
students’ achievements than the teachers were. Hence, it was demonstrated that regression models’ 
“decisions” outperform human-made decisions regardless the weights that were ascribed to a 
distinct piece of information, and I therefore presume that with this study not only special examples, 
but a class of regression models was examined with respect to their ability of classifying students. 

The second limitation refers to the question of whether or not regression models are valid 
models of human (teacher) judgment. Using linear equations to model decisions has major 
theoretical implications. First, the relationship between the predictors and the criterion is assumed to 
be linear (or log-linear if the criterion is a binary variable); second, a low weight of one predictor can 
be compensated by a high weight of another predictor, without changing the value of the criterion; 
third, the criterion is always based on all predictors inserted into the regression model. None of 
these assumptions is necessarily true, and especially the latter two assumptions have been called into 
question by research dealing with judgment heuristics. Kahneman and Tversky, for instance, have 
argued that people often base their decisions on simplified strategies instead of full, systematic 
analyses of the available data (Kahneman & Tversky, 1973; Tversky & Kahneman, 1974). One 
hypothesis about how people make decisions beyond taking all available information into account is 
the take-the-best heuristic, suggested by Gigerenzer and Goldstein (1996). This heuristic is an 
instance of so-called fast-and-frugal heuristics, which are fast in execution and frugal in the 
information used (Gigerenzer, 2008).  

The take-the-best heuristic has been applied in several studies comparing the effectiveness of 
simple linear models to that of heuristic models (Dhami & Ayton, 2001; Dhami & Harries, 2001; 
Hogarth & Karelaia, 2006, 2007; Gigerenzer, 2008; Katsikopoulos, Pachur, Machery, & Wallin, 
2008) and has also been applied to predictions of high school dropout rates (Gigerenzer, Todd, & 
the ABC Research Group, 1999). Consistently, heuristic models outperformed regression models 
when the sample sizes were rather small and the regression models rather complex. 
Taken these arguments and findings into consideration, one might wonder whether the application 
of a fast and frugal algorithm might even outperform variants of linear regression models in 
homogenizing students’ achievements. Future work may continue here. 

Conclusion 

This study brought evidence that the ability grouping of students – exemplified as the 
placement of students to different tracks in secondary school – leads to the homogenization of their 
achievements. Moreover and more importantly, it was shown that homogenization of students’ 
achievements was more effective if the ability grouping was done by the aid of algorithms instead of 
by teachers. The algorithms that were used in this study were based on regression analysis and – 
concerning the information that was used in the algorithms – similar to real-live tracking decisions 
made by teachers. The reason why algorithms produced more homogeneous groups was simply that 
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they were more consistent than teachers, when students had to be grouped who were average 
achievers. Especially for those students, the use of algorithms is recommended. 
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