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Abstract: Texas provides a unique opportunity to examine teachers without standard university 
preparation, for it prepares more teachers through alternative pathways than any other state. We find 
two advantages for mathematics and science teachers prepared in the standard way. First, since 2008 
they have been staying in the classroom longer than those who pursued alternative routes. Second, 
we analyze student performance on Algebra 1 and Biology exams over the period 2012-2018. 

Algebra I students with experienced teachers from standard programs gain .03 to .05 in standard 
deviation units compared to students whose teachers were alternatively prepared. For Biology 
students there are fewer statistically significant differences, although when differences exist they 
almost all favor standard programs. These effects are difficult to measure in part because teachers 
are not assigned to teach courses with high-stakes exams at random. Nevertheless, we find strong 
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evidence in Algebra I that students learn more when their teachers have standard preparation. In 
Biology there is also evidence but less compelling. Thus, we recommend that all states bolster 
traditional university-based teacher certification, that Texas not take drastic action to curtail 
alternative certification, and that other states not allow it to grow too quickly.  
Keywords: teacher preparation; alternative certification; hierarchical linear models; STEM education 
 

Resultados de matemáticas y ciencias para estudiantes de maestros de caminos estándar y 
alternativos en Texas 
Resumen: Texas ofrece una oportunidad única para examinar a los maestros sin una preparación 
universitaria estándar, ya que prepara a más maestros a través de vías alternativas que cualquier otro 
estado de los EE. UU. Encontramos dos ventajas para los maestros de matemáticas y ciencias 
preparados de la manera estándar. Primero, desde 2008 han estado en el aula más tiempo que 
aquellos que buscaron rutas alternativas. En segundo lugar, analizamos el rendimiento de los 
alumnos en los exámenes de Álgebra 1 y Biología durante el período 2012-2018. Encontramos 
evidencia sólida en Álgebra I de que los estudiantes aprenden más cuando sus maestros tienen una 
preparación estándar. En biología también hay evidencia pero menos convincente. Por lo tanto, 
recomendamos que todos los estados refuercen la certificación tradicional de maestros basada en la 
universidad, que Texas no tome medidas drásticas para reducir la certificación alternativa, y que 
otros estados no permitan que crezca demasiado rápido. 
Palabras-clave: preparación docente; certificación alternativa; modelos lineales jerárquicos; 
Educación STEM 

 
Resultados de matemática e ciências para estudantes de professores de caminhos padrão e 
alternativos no Texas 
Resumo: O Texas oferece uma oportunidade única de examinar professores sem preparação 
padrão para a universidade, pois prepara mais professores por caminhos alternativos do que 
qualquer outro estado dos EUA. Encontramos duas vantagens para professores de matemática e 
ciências preparados da maneira padrão. Primeiro, desde 2008 eles ficam na sala de aula há mais 
tempo do que aqueles que buscam rotas alternativas. Segundo, analisamos o desempenho dos 
alunos nos exames de Álgebra 1 e Biologia durante o período 2012-2018. Encontramos na Álgebra 
I fortes evidências de que os alunos aprendem mais quando seus professores têm uma preparação 
padrão. Em Biologia, há também evidências, mas menos convincentes. Portanto, recomendamos 
que todos os estados reforcem a certificação tradicional de professores com base na universidade, 
que o Texas não tome medidas drásticas para reduzir a certificação alternativa e que outros estados 
não permitam que ele cresça muito rapidamente. 
Palavras-chave: preparação de professores; certificação alternativa; modelos lineares hierárquicos; 
Educação STEM 
 

Introduction 

 
The United States faces a growing shortage of teachers, with recent estimates of 100,000 

more new teachers needed each year than are available (Sutcher, Darling-Hammond, & Carver-
Thomas, 2019). Conversations about the complex issue of teacher shortages often turn to the 
certification pathways that are available to prospective teachers, and, complicating the issue, how 
pathways that increase the quantity of teachers may not provide the quality of training required for 
them to be successful. Alternative certification programs grew out of the desire to develop market-
based (Hess, 2002) disruptive (Christensen, 1997) competitors to traditional university programs, 
affording individuals who have already completed a bachelor’s degree an expedited route into the 
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classroom. Given the complementary features and goals of these certification programs, it is clear 
that one cannot consider the issues of teacher shortages and preparation programs independently. 
Texas provides a unique opportunity to explore these related issues since it prepares more teachers 
and has also proceeded further towards obtaining teachers from non-standard pathways than any 
other state.     

The central aim in this study is to inform decisions on whether to allow and how to regulate 
alternative certification programs leading to rapid certification. Underlying the issue of teacher 
quality and teacher shortages is a complex system of interconnected costs and benefits. Regulation 
of any certification pathway should be fully informed by an understanding of the implications for 
both the number and adequate preparation of teachers. We focus on STEM teachers, examining 
teacher retention and student test scores in Algebra I and Biology. In this area of teaching, because 
of severe shortages we document, any effort to increase the supply of teachers must not be 
dismissed casually. We will show, particularly in Algebra 1, that students learn more in classes of 
teachers from standard programs, and that since 2008, alternatively certified teachers have not 
persisted in teaching as long as those from standard programs. Yet the sizes of these effects are not 
large enough to justify precipitous actions, and thus our conclusions and policy recommendations 
focus on how alternative certification pathways might fit into the ecosystem of STEM teaching in a 
way that neither disrupts this complex system, nor students’ opportunities to learn.  

Some of the most acute shortages of secondary teachers arise in the STEM fields, as 
indicated by surveys of employers (American Association for Employment in Education, 2016) or 
by the data in Table 1. Nearly 40% of mathematics teachers either lack full teaching certification or 
lack a major or minor in mathematics. In the physical sciences, over 60% of teachers lack one or the 
other of these qualifications. If one uses Advanced Placement Computer Science (CS) exams 
(College Board, 2016) as the basis for an estimate, less than 20% of U.S. high schools even offer 
computer science. Such shortages are poised to become greater because the number of teachers 
prepared in the highest-producing states has been falling (Figure 1).  

Table 1  
STEM teachers out of field in main assignment or not certified  

Subject Number of 
Teachers 

Percentage with no major in main 
assignment or not certified 

Mathematics 144,800 38% 

Science 126,300 27% 

Biology 51,900 35% 

Physical Science 64,600 62% 

Chemistry  24,300 66% 

Earth Sciences 12,400 68% 

Physics 13,300 63% 

Source: Schools and Staffing Survey (2012). 
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Figure 1. Teachers prepared in the highest-producing states by program type, 2010-2016. IHE refers 
to Institution of Higher Education  
Data from US Department of Education (2018b, Completers 2008-2016). 

 
The decline in production of teachers is particularly striking in New York and California. 

Texas, which now produces far more teachers than any other state despite having a smaller 
population than California, has also seen a drop, but it is less severe overall, and the trend in 
production has been upward since 2011-2012. The main reason for this is that Texas now obtains 
most of its teachers from alternative certification programs, and these are dominated by a few 
companies that specialize in rapid online teacher certification. Thus it is of interest to determine if 
and in what way preparation pathways impact teacher quality because of the increasing quantity of 
alternatively certified teachers, and the use of alternative certification programs to ameliorate teacher 
shortages. 

We focus on STEM teachers in particular, for which Figure 2 shows production has been 
declining as well. The difficulty of recruiting STEM teachers has been a subject of concern at least 
since the Gathering Storm report (Augustine, 2006). The largest effort at the Federal level to increase 
the number of STEM teachers is NSF’s Noyce Scholarship program (National Science Foundation, 
2016). In 2012, the most recent year for which data are available, around 1250 unique individuals 
obtained a first year of scholarship or stipend support through Noyce (Bobronnikov et al., 2014). 
This is less than 1% of the national need. Thus the institutions that have traditionally supplied the 
United States with teachers are not supplying enough in STEM shortage areas, and programs 
intended to rectify these problems are doing so at a smaller scale than would be needed to solve the 
problem.  
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Figure 2. Mathematics and science teachers prepared in the highest-producing states, 2012-2016 
Data from US Department of Education (2018a). 

Not only have teacher shortages persisted for decades (National Commission on Excellence 
in Education, 1983), the quality of preparation programs in colleges of education has been subject to 
criticism. Standard preparation programs stand accused on the one hand of being an “industry of 
mediocrity” (Greenberg, McKee, & Walsh, 2013) and on the other hand of surviving despite low 
quality because they are a “cash cow” for universities (Duncan, 2010). Some reformers have 
advocated allowing almost anyone with a content degree to enter teaching, and sorting out who is 
qualified to continue by assessing their performance on the job (Hess, 2002). Value-added models 
have specifically been recommended as the way to identify effective teachers (Gordon, Kane, & 
Staiger, 2006; Kane & Staiger, 2008). The combination of skepticism about colleges of education 
and concern over teacher shortages has motivated policy-makers across the country to allow 
alternative pathways to teaching. Alternative certification programs now exist in all states, but there 
is great variation in the regulations that control what they are able or not able to do. Some 
alternative certification programs live within universities and differ only slightly from the standard 
programs at the same institutions. Others are web-based and come close to implementing the 
recommendation that almost anyone with a content degree should be allowed into teaching as 
rapidly as possible. 

In the general context of market-based education reform, national policies affecting educator 
preparation are developing to incorporate two new ingredients: accountability from value-added 
models, and parallel preparation systems.  



Education Policy Analysis Archives Vol. 28 No. 27 6 

Accountability systems can use student test scores not only to evaluate the effectiveness of 
educators, but to evaluate the effectiveness of educator preparation programs. This nearly became 
mandatory across the country in 2016. In the fall of that year, the US Department of Education 
released guidance that directed every state to develop ratings of each Teacher Preparation Program 
(TPP). The guidance required states to “make meaningful differentiations in teacher preparation 
program performance” (US Department of Education, 2016, p. 670). To accomplish this goal, “For 
each year and each teacher preparation program in the State, a State must calculate the aggregate 
student learning outcomes of all students taught by novice teachers,” where a novice teacher is a 
“teacher of record in the first three years of teaching” (US Department of Education, 2016, p. 656). 
Poor performance according to these measures could lead to consequences as severe as program 
closure. The rules spurred considerable opposition (Tatto et al., 2016), and they were eventually 
rescinded by Congress in the spring of 2017. Even so, this idea has not gone away at the state level. 
For example, current rule holds Texas TPPs accountable for “achievement, including improvement 
in achievement, of students taught by beginning teachers for the first three years following 
certification, to the extent practicable” (Texas Education Agency, 2019). Technical challenges have 
so far prevented implementation.  

The second development is expansion of parallel teacher preparation systems that transform 
teacher development from a preservice to an in-service activity. Parallel systems have mainly drawn 
attention in connection with Teach for America and New York City Teaching Fellows (Shiva 
Mungal, 2015; Shiva Mungal, Trujillo, & Scott, 2016). We will report here on the intersection of 
parallel preparation systems with for-profit certification, which provide the possibility of rapid 
growth to large scale. 

Much of the research addressing these reforms has focused on the use of student test scores 
to hold teacher preparation programs accountable. The main finding, as we will review in the next 
section, is that it is very difficult to discern differences between programs based on the learning 
gains of the students of their graduates. These research findings may have been published with the 
expectation of warding off use of value-added models to evaluate educator preparation programs. 
However, a consequence, intentional or not, has been to provide a research base that supports 
expansion of for-profit alternative teacher preparation pathways. For if there is no measurable 
difference in student test scores between teachers from standard and alternative programs, then 
there is no reason states should not change their rules to enable alternative pathways. 

 

Background 
 

The study is set in Texas. This is for the simple reason that, as shown in Figure 1, Texas 
stands out from the rest of the country in the number and fraction of teachers coming from 
alternative certification programs. More than two decades ago Texas created a parallel certification 
structure that operated without much attention and now provides more than half of the state’s new 
teachers each year. The Texas experience should be of interest to the rest of the country because the 
Texas experience may be coming to the rest of the country. The two largest Texas companies 
providing alternative certification are expanding to other states. In the period between 2016 and the 
end of 2018 these companies secured permission to operate in Florida, Nevada, Utah, Indiana, 
South Carolina, North Carolina, Hawaii, Arizona, Michigan, Louisiana, and the District of Columbia 
(iTeach, 2019; Teachers of Tomorrow, 2018). Additional states are likely to follow suit. Thus there 
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should be interest in acquiring evidence about the effects on students of this growing force in 
education.  

Alternative Certification in Texas 

Alternative certification of teachers was first permitted in Virginia in 1982, soon followed by 
California, Texas, and New Jersey (Suell & Piotrowski, 2007). Alternative certification is difficult to 
define precisely and can encompass a wide range of programs. In broad terms, alternative 
certification refers to “pathways designed to attract a wider range of candidates into teaching 
generally by reducing or eliminating pre-service education coursework and speeding paid entry into 
the classroom” (Grimmett & Young, 2012, p. 34). 

The first alternative certification program in Texas was offered by the Houston Independent 
School District in 1985, with other school districts following suit. In 2000, the first community 
college offered an alternative certification program, and the first for-profit company began certifying 
teachers in 2002 (Etheredge, 2015). Figure 3 shows the numbers of mathematics and science 

teachers prepared through university-based programs and non-university alternative certification 
programs in Texas since 2004. From 2004 until 2011, the numbers of alternatively certified teachers 
rose steadily. In the fall of 2011, production from alternative certification programs suddenly 
dropped by half, due to widely publicized budget cuts that led tens of thousands of teachers to face 
dismissal. In such an environment, a drop in the number of people seeking to change careers and 
enter teaching through an alternative certification program is to be expected. Production eventually 
recovered, and by 2017 over half of Texas’ new STEM teachers were certified in alternative 
programs. Figure 4 shows the total number of STEM teachers prepared since 2004. As this figure  
shows, the number of STEM teachers prepared in 2016-2017 was essentially unchanged from a 
decade before. Therefore, introducing alternative certification programs in Texas has offset the 

Figure 3. STEM teacher production in Texas from 2004 until 2017, comparing production from 
standard and alternative certification pathways 
Data from Texas Education Agency. 
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decline in the production of STEM teachers from standard certification pathways illustrated in 
Figure 3, but has not led even to increases one might expect just on the basis of population growth. 
 The National Research Council describes one particular difficulty in assessing the 
effectiveness of teacher preparation programs (NRC, 2010): “there is more variation within 
categories such as `traditional’ and `alternative’ –- and even within the category of master’s degree 
programs – than there is between the categories” (p. 2). This worry is less applicable to Texas than it 
may be to other jurisdictions. In practice, the standard and alternative pathways are so different as to 
form parallel certification systems (Shiva Mungal, 2015).  
 

Alternative certification emerged from the philosophy that barriers to teaching should be 
removed. The candidates, all of whom already have finished a first Bachelor’s degree, usually have a 
few weeks of instruction and observation after which they enter the classroom working full time, 
completing their pedagogical coursework during an internship year, under a Provisional (or 
Internship) certificate. Thus, for alternative certification candidates, teacher preparation is an in-
service program. 

By contrast, standard university programs provide coursework, often but not necessarily as 
part of a degree, as well as fieldwork prior to a student teaching semester. The candidates then begin 
teaching full time with a standard certificate. Thus, in the standard model, teacher preparation is a 
preservice program. This distinction is not apparent from the state rules, since universities are 
permitted to place students in schools with Provisional certificates, while alternative certification 
programs are permitted to offer their candidates a student teaching experience. Nevertheless, when 
we describe our study sample, we will show that the standard and alternate programs are largely 
distinct when it comes to specific preparation practices. 

There is an additional respect in which one might wonder if standard and alternative 
pathways differ, and that is the undergraduate major of the students. However, from 1987 until 
2019, secondary teachers were forbidden to major in education in Texas. Therefore, for all pathways, 
the teachers have majored in one of the subjects they will teach, typically mathematics for 
mathematics teachers, and biology for biology teachers. 

Figure 4. STEM teacher production in Texas from 2004 until 2017, summing all pathways 
Data from Texas Education Agency. 
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The Use of Value-Added Modeling to Evaluate Teachers and their Preparation Programs 

Value-added modeling arose from work of Hanushek (1971) and Sanders & Rivers (1996). 
Value-added models use multilevel linear regressions to estimate the expected scores of students in a 
classroom, based on prior test scores and demographic characteristics. Deviations between this 
estimate and actual classroom performance can be attributed to the skill of the teacher. 

Value-added models are particularly controversial when they are used to make high-stakes 
decisions about individual teachers (Amrein-Beardsley, 2009; Darling-Hammond, Amrein-Beardsley, 
Haertel, & Rothstein, 2012). One of the largest problems is that the estimates are noisy. It violates 
basic fairness to make promotion and dismissal decisions about individual teachers based on a 
volatile stochastic process, even if the estimates used for the decisions are shown to be right on 
average. 

In addition to large margins of uncertainty, value-added models are prone to systematic bias, 
and small technical changes can have the effect of raising or lowering the apparent value added by 
whole groups of teachers. This problem should be possible to address with technical improvements, 
and the conventions that guide practitioners are evolving (Koedel, Mihaly, & Rockoff, 2015; Rivkin, 
Hanushek, & Kain, 2005). For example, it was once common to see models where students’ prior 
test scores entered to linear order, and this created a systematic bias in favor of teachers whose 
students’ average prior scores were at the high or the low end of the possible range (Marder, 2012). 
In the last five years it has become common (e.g. Backes, Goldhaber, Cade, Sullivan, & Dodson, 
2018) to include students’ prior scores to quadratic or cubic order, as a result of which this particular 
source of bias goes away. 

Value-added models can be used in three separate ways in relation to teacher preparation. 
First, they can be used to evaluate student learning gains due to teachers from specific programs. 
Examples here are evaluations of Teach for America (Clark et al., 2013; Decker, Mayer, & 
Glazerman, 2004; Turner, Goodman, Adachi, Brite, & Decker, 2012) and of UTeach (Backes et al., 
2018). According to Clark et al. (2013) the difference in value-added effectiveness between TFA 
graduates and those of comparison programs is .06 standard deviations, and the value added by 
UTeach graduates is on the same order. These findings set the scale for the largest value-added 
differences one might expect to find for individual programs. 

Second, value-added models can be used to compare a variety of teacher preparation 
programs in a region or state. Well-studied regions include Florida (Harris & Sass, 2011; Sass, 2011), 
North Carolina (Henry, Bastian, et al., 2014; Henry, Purtell, et al., 2014), Washington State (Cowan 
& Goldhaber, 2016; Goldhaber, Liddle, & Theobald, 2013), Missouri (Koedel, Parsons, Podgursky, 
& Ehlert, 2015), New York City (Boyd, Goldhaber, Lankford, & Wyckoff, 2007; Boyd et al., 2012; 
Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2009; Kane, Rockoff, & Staiger, 2008), California 
(Kane & Staiger, 2008) and Texas (Mellor, Lummus-Robinson, Brinson, & Dougherty, 2008; von 
Hippel, Osborne, Lincove, Bellow, & Mills, 2016).  

The previous Texas results are of particular relevance for us. Mellor et al. (2008) studied 
student test scores in classrooms of novice teacher graduates from University of Texas System 
campuses, with data from 2003 through 2007. Their primary goal was “to determine how student 
achievement in the classroom might be used as an indicator of the success of teacher preparation 
programs” (p. 8). At the time there was no state-wide data system in place and they spent years 
obtaining data from over 400 districts. They carried out a variety of comparisons with multilevel 
models, but almost none of the effects they found was large enough to rule out having been caused 
by sampling uncertainty. They sum up by saying, “Our most significant finding was that limitations 
of most state data and assessment systems, including the one in Texas where our study was 
conducted, make this kind of research difficult” (p. 24). Six years later, the problem of evaluating 
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learning gains due to Teacher Preparation Programs (TPPs) was revisited by von Hippel et al. 
(2016), now with the advantage of a statewide data set. They could not detect program differences 
and conclude, “The potential benefits of TPP accountability may be too small to balance the risk 
that noisy TPP estimates will encourage needless, disruptive, and ineffective policy actions” (p. 2). 
These conclusions are similar to the findings of (Koedel, Parsons, et al., 2015) in Missouri, and have 
since been extended to several other states (von Hippel & Bellows, 2018). 

Third, value-added models can be used to examine the efficacy of broad classes or types of 
preparation pathways (Harris & Sass, 2011). The present study of teacher preparation pathways in 
Texas falls into this third class. Some studies (Gordon et al., 2006; Kane et al., 2008) conclude that 
factors such as preparation routes and advanced degrees have almost no measurable effects on 
student outcomes. Boyd et al. (2012), analyzing some of the same data from New York City as Kane 
et al. (2008), conclude that differences in teacher background can be detected; the difference 
between the studies lies in how the models were constructed. The models of Boyd et al. (2012) pay 
more attention to grouping teachers with similar characteristics and from similar programs. The 
largest single effect in the base model of Boyd et al. (2012) is that a teacher have five years of 
experience, which corresponds to a value-added gain of 0.1 standard deviations in student test scores 
for middle school mathematics. The largest program differences, which are for Teach for America 
corps members, are around 0.05 standard deviations, while for College Recommended teachers the 
effect is around 0.02 standard deviations.  

The net result of studies comparing different types of teacher preparation programs has been 
sustained uncertainty. The National Research Council determined that “Because the information 
about teacher preparation and its effectiveness is so limited, high-stakes policy debates about the 
most effective ways to recruit, train, and retain a high-quality teacher workforce remain muddled” 
(NRC, 2010, p. 5). Grossman & Loeb (2008, p. 185) similarly conclude that “[t]he available research 
does not paint a complete picture of either optimal recruiting and selection criteria nor optimal 
preparation opportunities.” In the absence of convincing results about pathways, it is not surprising 
that the US Department of Education decided that “effectiveness of graduates is not associated with 
any particular type of preparation program, [so] the only way to determine which programs are 
producing more effective teachers is to link information on the performance of teachers in the 
classroom back to their teacher preparation programs” (US Department of Education, 2016, p. 566). 

Although some scholars argue that noisy value-added model estimates make it difficult to 
reliably determine the effectiveness of individual TPP’s (von Hippel & Bellows, 2018), there is some 
experimental evidence (Kane & Staiger, 2008) that the estimates can be accurate when averaged over 
a sufficiently large number of teachers. As such, using value-added models to evaluate teacher 
preparation pathways can provide reliable estimates of their efficacy in improving student test scores 
(Constantine, Player, Silvaa, Grider, & Deke, 2009; Guarino, Santibanez, & Daley, 2006; Wayne & 
Youngs, 2003). Rather than determine the efficacy of individual TPP’s, we seek to estimate the 
effects of alternative and standard teacher preparation pathways on student achievement using 
statewide available in Texas. Given the large number of teachers we include in our study, the 
estimates we provide for the efficacy of teacher preparation pathways are reliable.  

Theoretical Framework 

We make use of value-added models, which are a standard tool in addressing questions such 
as those in this paper. A difficulty of these models, which is common to studies using administrative 
data rather than random assignment, is that they permit confounding associations.  

There are no experimental studies that address directly the questions we pose. Clark et al. 
(2013) and Kane & Staiger (2008) switched teachers randomly between classrooms in a school. This 
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randomization would be useful if teachers from some pathway were preferentially assigned to certain 
sorts of students within each school. We examine this possibility later and find no evidence for it. 
The main confounding association we actually find is that schools with higher percentages of 
disadvantaged students are more likely to have alternatively certified teachers.  

An experimental study to eliminate this confounding association would need to allow 
teachers to be hired into schools by the normal process and then, once they had been given their 
teaching assignments, randomly switch them between schools. The practical and ethical barriers to 
such a study are so considerable it is unlikely ever to be carried out. 

The modern theory of causality provides tools to permit thinking about such problems while 
designing and analyzing data. Two important figures are Rubin and Pearl (Imbens & Rubin, 2015; 
Pearl, 2009; Rosenbaum P. & Rubin, 1983; Rubin, 1974, 2005). Texts and review articles summarize 
their methods for application in the social sciences (Holland, 1986; Morgan & Winship, 2015; 
Vanderweele, 2015).  

A strong recommendation from this literature is for studies such as this one to present 
relations between variables in graphical form with diagrams where arrows indicate the direction of 
causality, and absence of an arrow indicates absence of a causal relation. We provide such a diagram 
for our system in Figure 5. When we construct hierarchical linear models, we will provide four 
primary variants. The assumptions in these variants are indicated through three causal links that are 
only present in some of the models as indicated.  

 

 

Figure 5. Directed Acyclic Graph indicating the main causal relations between variables in the study. 
Students Scores are measured in years Y and Y- 1. The causal assumptions of four primary model 
variants can be obtained by adding causal links as indicated 

 
In two of the models, student score depends on classroom averages of demographic 

variables, and in one of the models, teacher quality depends upon years of experience independent 
of preparation pathway. 

The most consequential causal assumption is whether Campus Quality impacts Student 
Score independent of Teacher Quality. If one assumes that excellent campuses are excellent mainly 
because of the quality of the teachers, then there is no direct causal link from Campus Quality to 
Student Score in year Y. This is the formal way that the confounding association between teacher 
and school quality shows up. We have chosen to deal with it by constructing models that correspond 
to the two different causal assumptions. For Algebra I, results do not vary much when we do this, 
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and this gives us confidence in the conclusions. For Biology the results vary much more, which is 
why we end up more uncertain about the effect of teacher preparation pathways in Biology. 

Note in all models the absence of an arrow from Student Demographics to Preparation 
Pathway. This represents a claim we will substantiate in the next section that within a school, the 
characteristics of students in a classroom are uncorrelated with the preparation pathway of the 
teacher.  

Two additional concepts are the importance of thinking in concrete terms about 
interventions, and the need to think through the causal relations between known variables. An 
example pertinent to the current case may help explain. A robust finding of the literature on teacher 
quality is that teachers get better with experience, at least up through their first five years (Boyd et 
al., 2012). We will show that teachers from standard programs are more likely to remain in teaching 
than those from alternative programs. Therefore, one of the reasons that students of teachers from 
standard programs might learn more is that teachers from standard programs on average are more 
experienced. Now imagine some policy intervention that has the effect of increasing the fraction of 
teachers in a state that comes from standard programs. How should one estimate the effect on 
students of this intervention? 

Causal reasoning says that if staying longer in teaching follows from attending a standard 
program, and if attending a standard program follows from the policy intervention, then it is fine to 
attribute increases in student test scores from their experienced teachers to the policy. This means 
that in constructing a value-added model for teachers where the population is in steady state, one 
should not control for years of experience. In Figure 5, Years of Experience depends on Preparation 
Pathway for three of the models, and therefore these models do not include a control for Years of 
Experience. Formally, controlling for the causal descendent of a factor introduces new confounding 
associations (Morgan & Winship, 2015, pp. 101–109). This argument is only fully convincing if the 
age population of teachers from different pathways has reached a steady state, but this is not the 
case, and for this reason we do present a model including Years of Experience. 

Given the competing causal explanations that attach to models with different terms, we have 
run many different forms of the models, including many variants we do not have space to present. 
We regard our results as most reliable when they are robust against all our variations. 

Data Source 

We obtained our data from the Texas Educational Research Center (ERC). This is a data 
repository populated by a number of different Texas agencies, including the Texas Education 
Agency and the Texas Higher Education Coordinating Board. We first obtained access in 2014, with 
a request to study student outcomes in high school STEM disciplines as a function of teacher 
preparation pathway. The right to access and publish results depends upon staying within the 
confines of the original request. 

The data sources are longitudinal, meaning every teacher and every student has a unique 
anonymous identifier that follows them through the years. For the purpose of this study, we needed 
to be able to link students and teachers, so that we would know the preparation background of the 
teachers and associate them with their students. Although the ERC has test score data going back to 
as far as 1994, links between students in a class and their teacher only became available for the year 
2012. Thus when we first applied for data access we had available one year’s worth of data, while at 
this point we have seven years to work with. The only high school STEM exams offered over this 
time period are Algebra I and Biology, and these are the exams we study. Essentially all Texas 
students take these exams; however, tens of thousands of students take Algebra I and its associated 
exam at the end of middle school in eighth grade. The population of eighth graders taking Algebra I 
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is quite different from the population taking it in ninth grade or later. The eighth-grade students 
have much higher prescores on average and much lower incidence of free and reduced lunch. In this 
study we restrict our attention to the ninth grade Algebra I population only. Almost all students take 
Biology in ninth grade, so the question of restricting to that population does not arise. 

Descriptive Statistics 

Teacher Retention 

We begin with some straightforward characterizations of teachers coming from different 
pathways and the schools in which they work. Our first finding is that in recent years STEM 
teachers coming from standard programs have been more likely to stay in teaching than those from 
alternative programs. We investigated this by examining teachers appearing in the Texas dataset, 
excluding those coming in from out of state. Once they appeared on the teaching roster somewhere 
in the state, we checked if they were still teaching n years later and computed the fraction remaining 
in teaching as a function of years in service and program pathway. The result appears in Figure 6. 
We see that for the period 2003-2007, STEM teachers from alternative and standard pathways 
stayed in teaching at approximately the same rate for any number of years of service. However, for 
STEM teachers entering the profession between 2008 and 2012, at the five-year mark 5% more 
from standard pathways were still in teaching, while for those entering after 2013, 10% more were 
still in teaching at the five-year mark. These findings for STEM teachers are compatible with the 
results for teacher retention by pathway for all teachers (Ramsay, 2017b). 
 

 

Figure 6. Retention of Texas STEM teachers in teaching by preparation pathway, using three cohorts, 
the first averaged over teachers entering 2003-2007, the second entering 2008-2012, the third 
entering 2013-2017 using data through 2018  
Data from Texas Education Agency through Education Research Center. 
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Thus, 15 years ago when the fraction of teachers from alternative pathways was small (Figure 

3), the teachers entering in this fashion were just as committed to continuing as those from the 
standard routes. More recently, as teachers from alternative pathways have become dominant in the 
state, their likelihood of staying in teaching has dropped further and further behind that of the 
teachers from standard pathways. 

Teacher Population 

The specific population of teachers we study in detail is Algebra I and Biology teachers from 
the years 2011-2012 through 2017-2018. We do not include all the Algebra I and Biology teachers in 
the state. Our dataset has those in public schools, regular and charter, but no private schools. For 
the purposes of this study, we exclude teachers who were certified out of state. Furthermore, 
because the period in which alternative certification programs existed in Texas extends back 
approximately two decades, we consider teachers with up to 20 years of experience. A cutoff is 
appropriate because more than 20 years ago the teacher preparation environment in Texas was so 
different than it is today it does not make sense to use data from teachers prepared then as a guide 
to the future.  

Another sub-population of teachers described by years of service merits special attention. 
Federal teacher preparation regulations from 2016 specified that teacher preparation programs were 
to be assessed on the performance of their novice teachers, defined as those with less than four 
years of experience (US Department of Education, 2016, p. 68). These regulations were rescinded, 
but Texas and other states are moving to put in place such evaluation systems anyway. Thus, we 
decided to use two teacher experience groups: novice teachers, defined as those with less than four 
years of experience, and all teachers with up to twenty years of experience. Table 2 displays the total 
numbers of teachers in our sample for each academic year, and for these two levels of experience. 
The number of teachers prepared in Texas teaching either Algebra I or Biology started at around 
3000 and increased by around 20% over the seven years we examined. However the number of 
novice teachers assigned to these courses dropped by nearly half. We will return to this point later. 

 
Table 2  
Numbers of teachers in sample for each academic year in study, each subject, and two levels of experience (Years Exp.) 

Subject Years 
Exp. 

2011- 
2012  

2012- 
2013 

2013- 
2014 

2014- 
2015 

2015- 
2016 

2016- 
2017 

2017- 
2018 

Algebra I <20 2975 3055 3042 3180 3337 3448 3622 
Algebra I <4 814 657 544 502 520 488 466 
Biology <20 3079 3088 3040 3088 3252 3305 3424 
Biology <4 845 677 624 580 580 547 490 

 
Now we look further into teachers assigned to Algebra I and Biology courses each year, and 

examine the pathways that led them into teaching. Three variables describing them can appear in 
principle in any combination. Teachers can come from a standard or alternative program, they can 
come from an Institution of Higher Education (IHE), or not, and they can enter teaching on a 
Standard or Provisional Certificate. The Standard certificate means they have a student teaching 
experience; otherwise they enter classrooms as full-time paid teachers on Provisional (or Intern) 
certificates without having had student teaching. Table 3 shows the likelihood of combinations of 
these variables for the subjects, years of experience, and academic years we are considering. Matters 
are not quite as simple as a binary distinction between standard and alternative programs, but cases 
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that muddle the boundaries are not common. For example, fewer than 10% of teachers come from 
university post-baccalaureate programs with Provisional certificates. The entities offering alternative 
certification programs are varied. They include school districts, state-supported education service 
centers and universities. However the largest providers by far are companies that advertise low cost 
and provide many services online (“iTeach,” 2019; Teachers of Tomorrow, 2018). 
  
 
 
Table 3 
Percentages of teachers who followed various pathways. Percentages in each block and each column sum to 100%, 
apart from rounding. Rows shaded in grey are included in our standard category, while all others will be designated as 
alternative. First Certification (First Cert) is Standard (Std) or Probationary (Prob). Certification Program (Cert 
Prog) is Standard (Std), Alternative (Alt) or Post-Bacc (PB). Type is Institute of Higher Education (IHE) or not 
(N) 

Subj. 
Years 
Exp. 

First 
Cert 

Cert 
Prog Type 

2011-
2012 

2012-
2013 

2013- 
2014 

2014-
2015 

2015-
2016 

2016-
2017 

2017-
2018 

Alg. I <20 Std  Std IHE 35% 36% 38% 38% 38% 38% 39% 
Alg. I <20 Std  PB IHE 6% 5% 5% 4% 4% 4% 3% 
Alg. I <20 Prob Alt N 42% 43% 43% 43% 44% 44% 45% 
Alg. I <20 Prob Alt IHE 8% 7% 6% 7% 7% 6% 5% 
Alg. I <20 Prob PB IHE 7% 6% 6% 6% 6% 5% 5% 
Alg. I <20 Std  Alt N 1% 1% 1% 1% 1% 1% 2% 
Alg. I <20 Std.  Alt IHE 1% 1% 1% 1% 1% 1% 1% 

Alg. I <4 Std  Std IHE 16% 19% 20% 22% 24% 22% 21% 
Alg. I <4 Std  PB IHE 5% 5% 5% 4% 3% 3% 3% 
Alg. I <4 Prob Alt N 64% 65% 64% 62% 61% 60% 62% 
Alg. I <4 Prob Alt IHE 6% 5% 3% 2% 4% 3% 3% 
Alg. I <4 Prob PB IHE 5% 2% 2% 3% 4% 5% 4% 
Alg. I <4 Std  Alt N 2% 2% 4% 4% 2% 4% 5% 
Alg. I <4 Std  Alte IHE 2% 1% 1% 1% 1% 1% - 

Bio <20 Std  Std IHE 25% 25% 25% 24% 24% 24% 24% 
Bio <20 Std  PB IHE 8% 8% 7% 7% 7% 6% 6% 
Bio <20 Prob Alt N 48% 49% 50% 51% 52% 53% 54% 
Bio <20 Prob Alt IHE 8% 8% 8% 8% 8% 7% 7% 
Bio <20 Prob PB IHE 8% 8% 7% 7% 7% 7% 6% 
Bio <20 Std  Alt N 1% 1% 1% 2% 1% 2% 2% 
Bio <20 Std  Alt IHE 1% 1% 1% 1% 1% 1% 1% 

Bio <4 Std  Std IHE 10% 12% 13% 14% 15% 13% 14% 
Bio <4 Std  PB IHE 8% 6% 6% 6% 4% 4% 5% 
Bio <4 Prob Alt N 66% 64% 65% 61% 64% 67% 63% 
Bio <4 Prob Alt IHE 7% 7% 7% 6% 6% 5% 4% 
Bio <4 Prob PB IHE 6% 5% 4% 5% 4% 6% 6% 
Bio <4 Std  Alt N 2% 3% 4% 4% 3% 3% 6% 
Bio <4 Std  Alt IHE 1% 2% 1% 2% 1% 1% 2% 
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Therefore, rather than studying the eight possible pathway scenarios, we reduced them to 
two. We define standard programs to include teachers prepared by Institutions of Higher Education 
(IHE) enrolled in standard or post-baccalaureate programs and obtaining Standard first certificates. 
Everyone else, including some of the students from universities, we attribute to an alternative 
program. We ran variants of the analysis, for example including graduates of university-based 
alternative programs who began teaching with a standard certificate in the standard group. However 
as the numbers of teachers in such classifications were small, and none of the conclusions in our 
analysis were affected, we report only results from the comparison groups we have just described. 
The great majority of teachers come either from standard university programs with student teaching 
or from alternative programs without it. 

For teachers with up to 20 years of experience in our sample, around 40% come from 
standard programs and 60% from alternative programs. For novice teachers, 30% or less come from 
standard programs, and 70% or more from alternative programs. These percentages illustrate the 
scale to which alternative certification has grown in Texas. However, please note that the detailed 
results in this section describe the teachers in our sample assigned to teach particular high-stakes 
courses, not teachers in the state overall. 

Student Population 

Next we turn attention to the characteristics of students, and the associations between 
teacher pathway and student demographics. Table 4 provides descriptions of students appearing in 
our sample, comparing the classrooms of teachers from standard and alternative pathways. We 
aggregate all years together, since changes over time were not worth remarking. Standard and 
alternatively certified teachers have significantly different student populations. The columns labeled 
“Standard” and “Alternative” report the percentage of teachers’ students with a certain 
characteristic. For example, 3.4% of the students of teachers from standard pathways were 
designated as Gifted. The alternatively certified teachers have a higher fraction of their students who 
are eligible for free and reduced lunch and who are Black and Hispanic. In general, for any factor 
that tends to lead to lower student outcomes, alternatively certified teachers have more of these 
students. This makes it important to control for these student characteristics in the analysis. 

We investigated whether the difference in student populations of the teachers from the two 
pathways is mainly within schools or between schools. To do this we constructed hierarchical linear 
models (Bolker et al., 2016; Gelman & Hill, 2007) of the form 

 

Xi = Ci + StdCerti + 𝜖𝑖;  Ci ∼ N(μC; σC
2  ), (0) 

 

where Xi is a demographic characteristic of student i, Ci is their campus, StdCerti is the 

certification pathway of their teacher, 𝜖𝑖 here and elsewhere is a random term making Xi normally 

distributed, and N is the normal distribution. The results appear in the final column of Table 4. 
They show that after one controls for the campus, the difference between student populations of 
teachers from standard and alternative pathways becomes much smaller, often insignificant, and may 
reverse sign. The difference in student populations is mainly due to the schools in which teachers 
from standard and alternative pathways are likely to work. Within a given school the teachers from 
standard and alternative programs are not preferentially assigned to one sort of student or another. 
The final row of the table describes students who are tracked into Algebra I in eighth grade.  
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Table 4  
Average characteristics of students for standard and alternative teachers with up to 20 years of experience over all years 
in the study. All differences between columns labeled Standard and Alternative are significant with p<0.001. Final 
columns show difference between classroom demographics of teachers from standard and alternative pathways after 
controlling for school identity with Eq. (0). Numbers in parentheses show one standard uncertainty 

* |t|>1.96, ** |t|>2.33, *** |t|>3.09 

Methods 

Multilevel Models for Student Test Scores 

We studied changes in student test scores through multilevel models where students are 
nested within classroom, classrooms are nested within teacher, teachers are nested within campus, 
we control for each student’s pre-score, an array of demographic information about student and 
campus, and estimate the effect of teacher pathway on student test scores. Thus, to the extent 
possible, the models compare teachers with other teachers teaching the same subject in the same 
school and attempt to compensate for differences in school and classroom populations. 

We start with data from the 2011-2012 academic year using pre-scores from 2010-2011 and 
proceed through 2017-2018. The 2011-2012 academic year was the first year that student-teacher 
links became available in the Texas statewide dataset, and the 2017-2018 academic year provides the 
most recent data available2.  

During our study period, Texas was transitioning between sets of high-stakes standardized 
exams, from TAKS to STAAR. The only high school STEM exams offered during this entire period 
were STAAR Algebra I and STAAR Biology. In 2011-2012, pre-scores came from TAKS eighth-

                                                 
2 Because the study makes use of de-identified student data in highly aggregated form, institutional IRB has 
ruled this study exempt. 

Category Discipline Standard  Alternative   
Standard - Alternative, 

School Control 

EcoDis Algebra I 52.1% 58.7% (0.1%) -0.2% (0.1%) ** 

Gifted Algebra I 3.4% 3.6% (0.0%) 0.1% (0.0%) *** 

SpecEd Algebra I 5.3% 5.4% (0.0%) -0.5% (0.0%) *** 

LEP Algebra I 7.2% 9.6% (0.0%) 0.3% (0.0%) *** 

Asian Algebra I 2.0% 1.9% (0.0%) 0.2% (0.0%) *** 

Black Algebra I 12.0% 16.1% (0.0%) -0.2% (0.0%) *** 

Hispanic Algebra I 52.8% 56.5% (0.1%) 0.1% (0.1%) ** 

White Algebra I 30.9% 23.4% (0.1%) 0.0% (0.1%)   

EcoDis Biology 44.4% 51.1% (0.1%) 0.1% (0.1%)   

Gifted Biology 11.1% 10.9% (0.0%) -0.1% (0.0%)   

SpecEd Biology 3.9% 3.9% (0.0%) 0.1% (0.0%) *** 

LEP Biology 5.2% 6.9% (0.0%) 0.3% (0.0%) *** 

Asian Biology 4.1% 4.0% (0.0%) 0.0% (0.0%)   

Black Biology 10.6% 14.1% (0.0%) -0.1% (0.0%) ** 

Hispanic Biology 48.3% 52.3% (0.1%) 0.1% (0.1%)   

White Biology 34.5% 27.4% (0.1%) 0.0% (0.1%)   

Track Biology 28.2% 26.4% (0.1%) 0.0% (0.1%)   
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grade mathematics and TAKS eighth-grade science, while for later years scores came from STAAR 
eighth-grade mathematics and science. 

 We kept only cases where the student had a valid ninth-grade score in year Y and a valid 
eighth-grade score in the previous year. There were tens of thousands of students who took Algebra 
I in eighth grade, mainly high-achieving students in suburban middle schools. We decided not to 
include an analysis of this population. There were several accommodations available to students, 
including provisions for English-language learners, vision-impaired students, and a modified exam 
for students with learning disabilities. We could not simply group these students in with other 
students because most of them were taking a substantially different exam. Thus, in most of our 
analyses, we exclude all students who received any of these accommodations. However, we included 
a large subset of them in the following way. In our report on student sub-populations, we create a 

multilevel model for all students who took the alternate exam in year Y – 1 and also took the 
alternate exam in year Y. 

Test score effect sizes are customarily obtained by dividing exam scores by the standard 
deviation. For ninth graders who took Algebra I in 2011-2012, the standard deviation was 0.17. For 
these same students the standard deviation of their mathematics scores the year before in 8th grade 
was 0.15, and other years are similar. We express all model results in units of the exam standard 
deviations, which is around 0.16. 

Any given student test score result could end up in our data set from one to six times. The 
test scores appeared multiple times when the student took classes with separate identification 
numbers in separate semesters, when more than one teacher was associated with the class section, or 
if the student changed schools in Texas. We weighted every student record inversely with the 
number of times they appeared, so if a student was taught by several teachers during the year, each 
of them shared equally, and so that student did not contribute more to the final results than a 
student who appeared only once.  

Model Specifications 

We explored many different multilevel models, using lmer in R (Bolker et al., 2016). In our 
first collection of models, which are variants of Eq. (1), all data from 2011-12 through 2017-18 were 

included at once. At the top level, Si𝑌
 is the score of student i in some year 𝑌 and Si,Y−1 is the 

same student’s score on the exam in the same subject the previous year in a cubic polynomial. 

Teacher 𝑗 of student 𝑖 contributes through the random intercept 𝑇𝑗[𝑖]. By modeling the teacher in 

this way, each teacher should contribute equally to the estimate of the effect of their pathway to 

teaching (Koedel, Parsons, et al., 2015). The campus 𝑘 contributes random intercept Ck[i] as does 

the class 𝑛 through Classn[i], meaning that student 𝑖 is in class 𝑛. Coefficients for student-level 

demographic factors X range over Gifted, racial and ethnic groups, Limited English Proficiency 
(LEP), Free/Reduced Lunch Eligibility (EcoDis), and Special Education. Here g[i] is the value of 

assigned group affiliation for student 𝑖.  
We modeled the influence of tracking, as recommended by Jackson (2014). The most 

important form of student tracking in Texas is placing students in Algebra I in eighth grade. To 
control for this, we removed students enrolled in Algebra 1 during their eighth-grade year from our 
study of mathematics and created a flag for them when modeling biology. Some variants of Eq. (1) 

control for classroom-level averages of the demographic variables through γXX̅n[i] (Chetty, 

Friedman, & Rockoff, 2014; Friedman, Rockoff, & Chetty, 2014), and others include a variable 𝐸 to 
control for teacher years of experience, assuming binned values of 0-4, 4-10, and 10-20 years of 
experience. 
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The main item of interest, certification pathway StdCertm for teacher 𝑗 of student 𝑖 out of 

program 𝑚 enters as a fixed effect. Finally, the second level of the model has random intercepts for 
teacher T, campus C, and class section Class. See Gelman & Hill (2007, Chapter 12.5) for notation.  

 

Si = ∑  
𝑌=2012

2016

∑ λβY

3

β=1

Si,Y−1
β

+ Tj[i] + Ej[i] + Ck[i] + Classn[[i]] + StdCertm[j[i]] 

+ ∑ Xg[i] + ∑ γXX̅n[i] + ϵi;XX   (1) 

 

Tj ∼ N(μT; σT
2 );  Ck ∼ N(μC; σC

2);  Classn ∼ N(μL; σL
2)  . 

 

Tables 5 and 6 provide results from these models. We present results from four different 
variants of this general form so as to display the effect upon the variable of interest, StdCert, of 
progressively adding terms. The causal assumptions of these four models were illustrated in Figure 5. 
Model (1a) lacks a campus intercept and also lacks averages of classroom demographics. The causal 
assumption in this model is that high quality campuses with students who perform well are high 
quality mainly because their teachers are of high quality. Model (1b) adds the campus intercept as a 
random effect, allowing high quality campuses to improve student scores through means other than 
teacher quality. (1c) adds classroom averages of demographic variables, and (1d) adds a control for 
years of service, which is justified by assuming it does not result from teacher pathway. Model (1c) is 
probably the most persuasive of the model specifications, since classroom averages of demographic 
variables do turn out to affect the results. While controlling for years of service in (1d) is debatable 
on causal grounds, adding it or not does not make much of a difference. 

 We also created estimates in which each year was treated separately. Model 2 is similar to 
model (1c) with random intercepts for campus, class, and teacher, and controls both for student 
demographics, classroom averages of student demographics, and tracking. 

 

Si,Y = ∑ λβ

3

β=1

Si,Y−1
β

+ Tj[i] + Ck[i] + Classn[[i]] + StdCertm[j[i]] 

+ ∑ Xg[i] + ∑ γXX̅n[i] + ϵi XX .  (2,Random) 

 

Tj ∼ N(μT; σT
2 );   Ck ∼ N(μC; σC

2);   Classn ∼ N(μL; σL
2)   . 

 

 
 
Model 3 has the form 
 

Si,Y = ∑ λβ

3

β=1

Si,Y−1
β

+ TJ[I] + Ck[i] + Classn[j[i]] + StdCertm[j[i]] 

+ ∑ Xg[i] + ∑ γXX̅n[i] + ϵiXX     (3, Fixed) 

 

Tj ∼ N(μT; σT
2 ); Classn ∼ N(μL; σL

2) 
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This is the same as the previous, except that campus is treated as a fixed effect at the top 
level, rather than being modeled as a random effect at the second level. This model is less 
appropriate for finding the contribution of teacher pathway because in cases where a campus has 
teachers from only a single pathway, the campus fixed effect subtracts them off rather than 
comparing them with teachers in similar campuses as the campus random effect model does. 

Model 4 is  

Si,Y = ∑ λβ

3

β=1

Si,Y−1
β

+ TJ[I] + Classn[j[i]] + StdCertm[j[i]] 

+ ∑ Xg[i] + ∑ γXX̅n[i] + ϵiXX       (4, None) 

 

Tj ∼ N(μT; σT
2 ); Classn ∼ N(μL; σL

2) 

In this case there is no campus intercept. One would use this model if one adopts the view 
that the difference between campus performance is mainly due to the teachers and not to other non-
student factors. 

We had a fifth model which we applied to subgroups of students.  
 

Si,Y = ∑ λβ
3
β=1 Si,Y−1

β
+ TJ[I] + Classn[j[i]] + StdCertm[j[i]] + ∑ γXX̅n[i] + ϵiX   (5, Subgroup) 

Tj ∼ N(μT; σT
2 );   Ck ∼ N(μC; σC

2);   Classn ∼ N(μL; σL
2)    

 
This model was applied after being restricted to a demographic subset of our sample, for 

example to the subgroup of economically disadvantaged students, gifted students, or Special Needs 
students taking an alternate test. This model allowed us to focus on the effect of teacher pathway on 
a specific group of students, while also controlling for the broader demographic compositions of 
their classes. 

Results 

Multi-level Models 
\ 

We begin our discussion of results with Model (1). The random and fixed effects are given in 
Table 5 for Algebra I and Table 6 for Biology. The coefficients related to student subgroups for the 
models of Algebra I and Biology are quite similar to each other.  

Among the random effects, the largest is the difference between campuses, with a standard 
deviation of 0.26 for Algebra I and 0.28 in Biology. The standard deviation of the difference 
between teachers is around in 0.25 Algebra I and 0.2 in Biology. That is, we find slightly larger 
differences between campuses than within them. The standard deviation of classes taught by the 
same teacher is between 0.13 and 0.17 in both subjects.  

We report the teacher pathway effect (StdCert) as positive when students of teachers from 
standard programs get higher scores than those from alternative programs. As shown in Table 5, 
students with teachers from standard pathways gain around 0.03–0.05 in Algebra I. 
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Table 5  
Model (1) coefficients for Algebra I. Numbers in parentheses are standard uncertainties. Different variants of the 
model include terms as shown. The main result of interest is in the shaded row labeled StdCert, which gives gains in 
standard deviation units for students of teachers from standard programs.  

Random 
Effects 

1a   1b   1c   1d   

Campus SD     0.261   0.253   0.253   
Teacher SD 0.319   0.250   0.245   0.244   
Class SD 0.188   0.175   0.172   0.172   
Fixed 
Effects 

1a   1b   1c   1d 
   

StdCert 0.054 (0.007) *** 0.041 (0.006) *** 0.037 (0.006) *** 0.033 (0.006) *** 
EcoDis -0.074 (0.001) *** -0.073 (0.001) *** -0.070 (0.001) *** -0.070 (0.001) *** 
Gifted 0.218 (0.003) *** 0.219 (0.003) *** 0.204 (0.003) *** 0.204 (0.003) *** 
SpecEd -0.294 (0.002) *** -0.298 (0.002) *** -0.272 (0.003) *** -0.272 (0.003) *** 
LEP -0.152 (0.002) *** -0.153 (0.002) *** -0.149 (0.002) *** -0.149 (0.002) *** 
Asian 0.148 (0.042) *** 0.145 (0.042) *** 0.133 (0.041) *** 0.133 (0.041) *** 
Black -0.081 (0.041) * -0.080 (0.041)   -0.081 (0.041)   -0.081 (0.041)   
Hispanic -0.054 (0.041)   -0.053 (0.041)   -0.055 (0.041)   -0.055 (0.041)   
White -0.017 (0.041)   -0.017 (0.041)   -0.020 (0.041)   -0.020 (0.041)   
AveEcoDis             -0.087 (0.006) *** -0.087 (0.006) *** 
AveGifted             0.390 (0.013) *** 0.389 (0.013) *** 
AveSpecEd             -0.107 (0.005) *** -0.107 (0.005) *** 
AveLEP             -0.017 (0.006) ** -0.017 (0.006) ** 
AveAsian             0.270 (0.021) *** 0.270 (0.021) *** 
AveBlack             -0.069 (0.010) *** -0.068 (0.010) *** 
AveHispanic             -0.037 (0.008) *** -0.037 (0.008) *** 
AveWhite             -  -   - -   
Tracked             -  -   - -   
Yrs: 4-10                   0.019 (0.004) *** 
Yrs: 11-20                   0.026 (0.005) *** 

𝜆1(2012) 1.235 (0.077) *** 1.259 (0.077) *** 1.188 (0.077) *** 1.209 (0.077) *** 

𝜆1(2013) 3.051 (0.079) *** 3.042 (0.079) *** 2.946 (0.079) *** 2.964 (0.079) *** 

𝜆1(2014) 1.798 (0.074) *** 1.778 (0.074) *** 1.694 (0.074) *** 1.698 (0.074) *** 

𝜆1(2015) 1.093 (0.073) *** 1.064 (0.073) *** 0.989 (0.073) *** 0.987 (0.073) *** 

𝜆1(2016) 2.948 (0.078) *** 2.897 (0.078) *** 2.834 (0.078) *** 2.826 (0.078) *** 

𝜆1(2017) 2.405 (0.075) *** 2.339 (0.074) *** 2.304 (0.074) *** 2.290 (0.074) *** 

𝜆1(2018) 2.756 (0.072) *** 2.706 (0.072) *** 2.721 (0.072) *** 2.700 (0.072) *** 

𝜆2(2012) -0.082 (0.163)   -0.157 (0.162)   -0.050 (0.162)   -0.082 (0.162)   

𝜆2(2013) -0.250 (0.167)   -0.246 (0.167)   -0.071 (0.167)   -0.105 (0.167)   

𝜆2(2014) 3.829 (0.158) *** 3.844 (0.158) *** 3.981 (0.158) *** 3.974 (0.158) *** 

 
 
 
 
 
 



Education Policy Analysis Archives Vol. 28 No. 27 22 

Table 5 (Cont’d.) 

Fixed 
Effects 

1a   1b   1c   1d   

𝜆2(2015) 5.633 (0.150) *** 5.663 (0.150) *** 5.771 (0.150) *** 5.775 (0.150) *** 

𝜆2(2016) 1.840 (0.163) *** 1.912 (0.163) *** 2.001 (0.163) *** 2.016 (0.163) *** 

𝜆2(2017) 4.113 (0.156) *** 4.209 (0.156) *** 4.230 (0.156) *** 4.254 (0.156) *** 

𝜆2(2018) 2.128 (0.144) *** 2.193 (0.144) *** 2.105 (0.144) *** 2.139 (0.144) *** 

𝜆3(2012) 2.111 (0.101) *** 2.158 (0.101) *** 2.098 (0.100) *** 2.113 (0.101) *** 

𝜆3(2013) 0.914 (0.110) *** 0.915 (0.110) *** 0.808 (0.110) *** 0.828 (0.110) *** 

𝜆3(2014) -1.951 (0.106) *** -1.952 (0.106) *** -2.033 (0.106) *** -2.029 (0.106) *** 

𝜆3(2015) -3.041 (0.098) *** -3.050 (0.098) *** -3.110 (0.098) *** -3.112 (0.098) *** 

𝜆3(2016) -0.634 (0.108) *** -0.668 (0.108) *** -0.721 (0.108) *** -0.730 (0.108) *** 

𝜆3(2017) -2.549 (0.102) *** -2.599 (0.102) *** -2.609 (0.102) *** -2.621 (0.102) *** 

𝜆3(2018) -0.939 (0.090) *** -0.968 (0.090) *** -0.912 (0.090) *** -0.930 (0.090) *** 
* |t|>1.96, ** |t|>2.33, *** |t|>3.09. AveEcoDis refers to fraction of class that is economically disadvantaged, and 
other variables beginning with Ave are defined similarly. Coefficients λ are defined in Equation 1 and refer to powers of 
pretest score, computed separately for each year 

 
This result is significant in all the model specifications chosen, although the effect is nearly 

twice as large in the models with fewer controls. That is not surprising, since we know from Table 4 
that teachers from standard programs find themselves overall in classrooms with fewer economically 
disadvantaged students, and more white students. In Biology, as shown in Table 6, results are 
significant in models 1a and 1b, but not in models 1c and 1d that include averages of classroom 
demographics and an intercept for each campus. 

Thus the case for improved student learning in classrooms with teachers from standard 
programs is strong for Algebra I, and robust against all variation of the models we examined. The 
case is weaker in Biology than in Algebra I, where we measure a significant advantage for teachers 
from standard pathways only in models that attribute most of the student learning gains in schools 
that are high-performing overall to the teachers rather than to other factors. 

The difference between models 1c and 1d is that 1d includes a control for years of 
experience, and 1c does not. We include the control for teacher years of experience despite the 
evidence that years of experience depends on pathway because it has been conventional in previous 
studies. One sees that whether it is included or not turns out not to make much of a difference. 

We now turn to a more detailed analysis year by year and for various subgroups. Table 7 
presents results for the three different models that vary the way campus effects are treated. The 
fixed effect model (Eq. 2, Fixed) which maximizes how much of an effect is attributed to the 
campus tends to give the smallest results, and the model without campus effects (Eq. 3, None) tends 
to give the largest results, showing that strong Algebra I teachers are associated with strong 
campuses. In every year and for each of the models, students gain about 0.03–0.05 in classes of 
Algebra I teachers from standard programs with up to 20 years of experience. The point estimates in 
classrooms of novice Algebra I teachers with up to four years of experience are similar, but the 
sample sizes are much smaller, and few of the differences are statistically significant. For Biology 
classrooms, there are fewer statistically significant results, and the point estimates are scattered 
between positive and negative. If one removes the classroom averages of demographic variables 
from models (2)-(5), there are many cases where students Biology teachers from standard programs 
have significantly higher learning gains, but these models are harder to defend than the ones we have 
used, and we do not report their results. 
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Table 6  
Model (1) coefficients for Biology. Numbers in parentheses are standard uncertainties. Different variants of the model 
include terms as shown. The main result of interest is in the shaded row labeled StdCert, which gives the gains in 
standard deviation units for students of teachers from standard programs.  

Random 
Effects 

1a   1b   1c   1d   

Campus SD     0.228   0.201   0.201   
Teacher SD 0.276   0.199   0.174   0.174   
Class SD 0.163   0.153   0.136   0.136   
Fixed 
Effects 

1a   1b   1c   1d 
   

StdCert 0.036 (0.007) *** 0.013 (0.005) ** 0.006 (0.005)   0.004 (0.005)   
EcoDis -0.082 (0.001) *** -0.078 (0.001) *** -0.067 (0.001) *** -0.067 (0.001) *** 
Gifted 0.218 (0.001) *** 0.221 (0.001) *** 0.173 (0.001) *** 0.173 (0.001) *** 
SpecEd -0.289 (0.002) *** -0.292 (0.002) *** -0.248 (0.002) *** -0.248 (0.002) *** 
LEP -0.234 (0.002) *** -0.234 (0.002) *** -0.219 (0.002) *** -0.219 (0.002) *** 
Asian 0.108 (0.034) *** 0.104 (0.034) ** 0.090 (0.006) *** 0.090 (0.006) *** 
Black -0.049 (0.034)   -0.049 (0.034)   -0.038 (0.006) *** -0.038 (0.006) *** 
Hispanic -0.042 (0.034)   -0.042 (0.034)   -0.035 (0.006) *** -0.035 (0.006) *** 
White 0.031 (0.034)   0.029 (0.034)   0.031 (0.006) *** 0.031 (0.006) *** 
AveEcoDis             -0.166 (0.005) *** -0.166 (0.005) *** 
AveGifted             0.265 (0.005) *** 0.264 (0.005) *** 
AveSpecEd             -0.170 (0.005) *** -0.170 (0.005) *** 
AveLEP             -0.089 (0.006) *** -0.089 (0.006) *** 
AveAsian             0.138 (0.012) *** 0.138 (0.012) *** 
AveBlack             -0.173 (0.008) *** -0.172 (0.008) *** 
AveHispanic             -0.107 (0.006) *** -0.107 (0.006) *** 
AveWhite             -  -    -  -    
Tracked             0.156 (0.001) *** 0.156 (0.001) *** 
Yrs: 4-10                   -0.003 (0.003)   
Yrs: 11-20                   0.010 (0.004) ** 

𝜆1(2012) 1.040 (0.061) *** 1.077 (0.061) *** 1.191 (0.061) *** 1.204 (0.061) *** 

𝜆1(2013) -1.513 (0.060) *** -1.489 (0.060) *** -1.225 (0.059) *** -1.209 (0.059) *** 

𝜆1(2014) 0.279 (0.059) *** 0.278 (0.059) *** 0.540 (0.059) *** 0.545 (0.059) *** 

𝜆1(2015) -0.147 (0.059) ** -0.171 (0.059) ** 0.048 (0.058)   0.051 (0.058)   

𝜆1(2016) 0.051 (0.058)   0.007 (0.058)   0.240 (0.058) *** 0.239 (0.058) *** 

𝜆1(2017) -0.544 (0.059) *** -0.621 (0.059) *** -0.403 (0.059) *** -0.409 (0.059) *** 

𝜆1(2018) -0.760 (0.060) *** -0.857 (0.060) *** -0.545 (0.060) *** -0.555 (0.060) *** 

𝜆2(2012) -3.713 (0.123) *** -3.791 (0.123) *** -3.779 (0.122) *** -3.798 (0.123) *** 

𝜆𝑑2(2013) 7.316 (0.119) *** 7.259 (0.119) *** 6.813 (0.118) *** 6.786 (0.118) *** 

𝜆2(2014) 3.616 (0.116) *** 3.603 (0.116) *** 3.149 (0.115) *** 3.141 (0.115) *** 

𝜆2(2015) 4.529 (0.113) *** 4.556 (0.113) *** 4.245 (0.112) *** 4.240 (0.112) *** 

𝜆2(2016) 4.913 (0.113) *** 4.973 (0.113) *** 4.633 (0.112) *** 4.636 (0.112) *** 

𝜆2(2017) 7.045 (0.115) *** 7.164 (0.114) *** 6.869 (0.114) *** 6.878 (0.114) *** 

𝜆2(2018) 8.518 (0.117) *** 8.686 (0.117) *** 8.122 (0.116) *** 8.138 (0.116) *** 

𝜆3(2012) 5.161 (0.073) *** 5.209 (0.073) *** 5.035 (0.073) *** 5.044 (0.073) *** 
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Table 6 (Cont’d.)           
Fixed 
Effects 

1a   1b   1c   1d 
   

𝜆3(2013) -2.733 (0.074) *** -2.697 (0.074) *** -2.581 (0.074) *** -2.567 (0.074) *** 

𝜆3(2014) -0.971 (0.071) *** -0.962 (0.071) *** -0.838 (0.071) *** -0.834 (0.071) *** 

𝜆3(2015) -1.279 (0.068) *** -1.290 (0.068) *** -1.271 (0.067) *** -1.269 (0.067) *** 

𝜆3(2016) -1.881 (0.068) *** -1.908 (0.068) *** -1.882 (0.067) *** -1.883 (0.067) *** 

𝜆3(2017) -3.349 (0.069) *** -3.409 (0.069) *** -3.416 (0.068) *** -3.421 (0.068) *** 

𝜆3(2018) -4.477 (0.071) *** -4.570 (0.071) *** -4.394 (0.070) *** -4.402 (0.070) *** 
* |t|>1.96, ** |t|>2.33, *** |t|>3.09. AveEcoDis refers to fraction of class that is economically disadvantaged, and 
other variables beginning with Ave are defined similarly. Coefficients λ are defined in Equation 1 and refer to powers of 
pretest score, computed separately for each year 

 
Table 7  
Estimates from Models (2)-(4) for teachers from standard certification programs, browken down by discipline, school 
year, and teacher experience.  Numbers in parentheses are standard uncertainties. 

 
 

Discipline Year Exp Random   Fixed    None   

Algebra I 11-12 <20 0.017 (0.011)   0.011 (0.012)   0.029 (0.014) * 
Algebra I 12-13 <20 0.031 (0.010) ** 0.033 (0.011) ** 0.034 (0.013) ** 
Algebra I 13-14 <20 0.021 (0.009) **  0.016 (0.010) 

 
0.03 (0.011) ** 

Algebra I 14-15 <20 0.027 (0.009) ** 0.02 (0.010) * 0.034 (0.011) ** 
Algebra 1 15-16 <20 0.041 (0.011) *** 0.031 (0.012) ** 0.065 (0.014) *** 
Algebra 1 16-17 <20 0.046 (0.010) *** 0.037 (0.011) *** 0.073 (0.014) *** 
Algebra 1 17-18 <20 0.038 (0.011) *** 0.036 (0.013) ** 0.054 (0.014) *** 
Biology 11-12 <20 0.004 (0.009) 

 
0.008 (0.010) 

 
-0.003 (0.011) 

 

Biology 12-13 <20 0.013 (0.010) 
 

0.008 (0.011) 
 

0.024 (0.013) 
 

Biology 13-14 <20 0.014 (0.008) 
 

0.013 (0.008) 
 

0.017 (0.010) 
 

Biology 14-15 <20 0.008 (0.008) 
 

0.008 (0.009) 
 

0.014 (0.011) 
 

Biology 15-16 <20 0.008 (0.008)  0.012 (0.009)  0.014 (0.010)  
Biology 16-17 <20 0.018 (0.008) * 0.019 (0.009) * 0.033 (0.010) *** 
Biology 17-18 <20 -0.001 (0.009)  -0.002 (0.010)  0.011 (0.011)  

Algebra I 11-12 <4 -0.033 (0.026) 
 

-0.011 (0.034) 
 

-0.046 (0.030) 
 

Algebra I 12-13 <4 0.005 (0.029) 
 

0.06 (0.038) 
 

-0.025 (0.034) 
 

Algebra I 13-14 <4 0.02 (0.029) 
 

0.023 (0.040) 
 

0.018 (0.033) 
 

Algebra I 14-15 <4 0.039 (0.028) 
 

0.012 (0.038) 
 

0.051 (0.033) 
 

Algebra I 15-16 <4 0.076 (0.039) * 0.083 (0.067)  0.074 (0.041)  
Algebra 1 16-17 <4 0.113 (0.037) ** 0.113 (0.056) * 0.129 (0.042) ** 
Algebra 1 17-18 <4 0.067 (0.042)  0.07 (0.067)  0.069 (0.046)  
Biology 11-12 <4 0.036 (0.022) 

 
0.008 (0.027) 

 
0.053 (0.026) * 

Biology 12-13 <4 -0.017 (0.026) 
 

-0.033 (0.036) 
 

-0.015 (0.030) 
 

Biology 13-14 <4 0.002 (0.024) 
 

-0.006 (0.031) 
 

-0.003 (0.027) 
 

Biology 14-15 <4 -0.012 (0.026) 
 

0.023 (0.037) 
 

-0.02 (0.028) 
 

Biology 15-16 <4 -0.018 (0.026)  -0.061 (0.038)  -0.003 (0.029)  
Biology 16-17 <4 0.011 (0.031)  0.06 (0.049)  0.001 (0.034)  
Biology 17-18 <4 -0.054 (0.033)  -0.091 (0.054)  -0.039 (0.035)  
* |t|>1.96, ** |t|>2.33, *** |t|>3.09 
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Tables 8 and 9 provide results for each combination of teacher pathway, subject, and a 
variety of student subgroups, using the model in Eq. 5 for teachers with up to 20 years of experience 
and novice teachers, respectively. Almost all of the estimates in Algebra I by subgroup indicate that 
students of teachers with standard certification gain between 0.03 and 0.08 in standard deviation 
units more than their counterparts with alternatively certified teachers. The largest differences are 
for students flagged as gifted, but the results from students eligible for free and reduced lunch (FRL) 
and those of limited English proficiency (LEP) are also noteworthy. The effects are stronger in 
Algebra I for teachers with up to 20 years of experience than they are for novice teachers. In Biology 
there are few statistically significant results, except for novice teachers in 2011-2012 and experienced 
teachers in 2016-2017. For both Algebra I and Biology the majority of the point estimates favor 
teachers from standard programs, and there are only two statistically significant results favoring 
teachers from alternative pathways, which are for LEP and Hispanic students of novice Biology 
teachers in 2017-2018. 

The Algebra I results from this section are summarized in graphical form in Figure 7. The 
results for all students come from the model in Eq. (2), and the rest from Eq. (5). Only results for 
teachers with up to 20 years of experience are shown in the graph. 

 

 

Figure 7. Value-added model gains in standard deviation units for all Algebra I teachers from 
standard programs as compared with teachers from alternative programs, overall and for student 
subgroups, showing change over time. Bars show standard uncertainties 
Data from Texas Education Agency through Education Research Center. 
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Table 8  
Estimates from Model (5) for student subgroups in classrooms of standard certified teachers with up to 20 years of 
experience. Numbers in parentheses are standard uncertainties 

Year Subgroup Algebra      Biology   

11-12 Gifted 0.066 (0.029) ** 0.018 (0.018)   
11-12 Special Needs 0.043 (0.023) 

 
0.026 (0.024) 

 

11-12 FRL 0.033 (0.012) ** 0.005 (0.010) 
 

11-12 LEP 0.025 (0.024) 
 

0.01 (0.023) 
 

11-12 Black 0.027 (0.018) 
 

0.019 (0.015) 
 

11-12 Hispanic 0.027 (0.012) * 0.003 (0.010) 
 

11-12 White -0.002 (0.015) 
 

-0.008 (0.012) 
 

12-13 Gifted 0.084 (0.027) *** -0.008 (0.017) 
 

12-13 Special Needs 0.055 (0.023) ** -0.028 (0.023) 
 

12-13 FRL 0.033 (0.011) ** -0.003 (0.010) 
 

12-13 LEP 0.006 (0.021) 
 

0.026 (0.022) 
 

12-13 Black 0.015 (0.016) 
 

0.015 (0.014) 
 

12-13 Hispanic 0.031 (0.011) ** -0.005 (0.010) 
 

12-13 White 0.038 (0.014) ** -0.001 (0.011) 
 

13-14 Gifted 0.010 (0.025) 
 

0.031 (0.014) * 
13-14 Special Needs 0.031 (0.025) 

 
0.008 (0.024) 

 

13-14 FRL 0.029 (0.010) ** 0.018 (0.009) * 
13-14 LEP -0.010 (0.019) 

 
0.003 (0.021) 

 

13-14 Black 0.035 (0.014) ** 0.003 (0.013) 
 

13-14 Hispanic 0.019 (0.010) 
 

0.015 (0.009) 
 

13-14 White 0.044 (0.013) *** 0.007 (0.010) 
 

14-15 Gifted 0.001 (0.025) 
 

0.018 (0.014) 
 

14-15 Special Needs -0.021 (0.038) 
 

0.033 (0.040) 
 

14-15 FRL 0.025 (0.01) ** 0.011 (0.009) 
 

14-15 LEP -0.005 (0.019) 
 

-0.004 (0.014) 
 

14-15 Black 0.013 (0.015) 
 

-0.005 (0.015) 
 

14-15 Hispanic 0.021 (0.011) ** 0.011 (0.009) 
 

14-15 White 0.029 (0.014) * 0.009 (0.011) 
 

15-16 Gifted 0.070 (0.027) ** 0.023 (0.014)  
15-16 Special Needs 0.024 (0.028)  0.051 (0.034)  
15-16 FRL 0.036 (0.012) ** 0.010 (0.009)  
15-16 LEP 0.045 (0.021) * 0.009 (0.019)  
15-16 Black 0.013 (0.017)  -0.003 (0.014)  
15-16 Hispanic 0.039 (0.012) *** 0.006 (0.009)  
15-16 White 0.046 (0.015) *** 0.008 (0.011)  

16-17 Gifted 0.039 (0.028)  0.011 (0.013)  
16-17 Special Needs -0.036 (0.059)  0.000 (0.071)  
16-17 FRL 0.048 (0.012) *** 0.025 (0.009) ** 
16-17 LEP 0.052 (0.02) ** 0.032 (0.021)  
16-17 Black 0.030 (0.016)  0.030 (0.014) * 
16-17 Hispanic 0.048 (0.012) *** 0.021 (0.007) * 
16-17 White 0.058 (0.014) *** 0.016 (0.011)  



Standard and Alternative Teacher Preparation Pathways 

 

27 

Table 8 (Cont’d.)       

Year Subgroup Algebra      Biology   

17-18 Gifted 0.034 (0.027)  -0.004 (0.014)  
17-18 Special Needs 0.030 (0.057)  0.055 (0.063)  
17-18 FRL 0.034 (0.012) ** 0.002 (0.010)  
17-18 LEP 0.025 (0.018)  0 (0.018)  
17-18 Black 0.018 (0.017)  -0.009 (0.015)  
17-18 Hispanic 0.037 (0.013) ** 0.001 (0.010)  
17-18 White 0.044 (0.015) ** -0.006 (0.012)  
* |t|>1.96, ** |t|>2.33, *** |t|>3.09    

 
Table 9  
Estimates from Model (5) for student subgroups in classrooms of standard certified teachers with less than 4 years of 
experience. Numbers in parentheses are standard uncertainties 

Year Subgroup Algebra   Biology   

11-12 Gifted 0.063 (0.064)   0.033 (0.039)   
11-12 Special Needs -0.08 (0.056) 

 
0.115 (0.051) * 

11-12 FRL -0.022 (0.028) 
 

0.043 (0.023) 
 

11-12 LEP -0.074 (0.05) 
 

0.113 (0.05) ** 
11-12 Black 0.01 (0.042) 

 
0.066 (0.033) * 

11-12 Hispanic -0.036 (0.028) 
 

0.05 (0.024) * 
11-12 White -0.069 (0.04) 

 
0.008 (0.029) 

 

12-13 Gifted 0.063 (0.07) 
 

-0.066 (0.045) 
 

12-13 Special Needs -0.012 (0.063) 
 

-0.041 (0.055) 
 

12-13 FRL -0.004 (0.031) 
 

-0.009 (0.028) 
 

12-13 LEP 0.001 (0.051) 
 

0.015 (0.055) 
 

12-13 Black -0.037 (0.041) 
 

-0.033 (0.037) 
 

12-13 Hispanic -0.002 (0.031) 
 

-0.013 (0.029) 
 

12-13 White 0.02 (0.039) 
 

0.004 (0.034) 
 

13-14 Gifted 0.008 (0.069) 
 

0.032 (0.043) 
 

13-14 Special Needs 0.018 (0.069) 
 

0.036 (0.066) 
 

13-14 FRL 0.044 (0.031) 
 

0.001 (0.025) 
 

13-14 LEP -0.007 (0.055) 
 

0 (0.052) 
 

13-14 Black 0.024 (0.041) 
 

-0.055 (0.036) 
 

13-14 Hispanic 0.042 (0.032) 
 

0.01 (0.026) 
 

13-14 White 0.06 (0.04) 
 

-0.008 (0.032) 
 

14-15 Gifted -0.058 (0.067) 
 

0.038 (0.043) 
 

14-15 Special Needs 0.18 (0.092) * 0.072 (0.085) 
 

14-15 FRL 0.037 (0.03) 
 

-0.029 (0.029) 
 

14-15 LEP -0.012 (0.05) 
 

0.008 (0.051) 
 

14-15 Black 0.104 (0.04) ** -0.043 (0.035) 
 

14-15 Hispanic 0.022 (0.031) 
 

-0.004 (0.028) 
 

14-15 White -0.013 (0.042) 
 

0.007 (0.034) 
 

15-16 Gifted 0.096 (0.083)  0.017 (0.040)  
15-16 Special Needs 0.081 (0.081) * 0.062 (0.092)  
15-16 FRL 0.063 (0.041)  -0.043 (0.030)  
15-16 LEP 0.086 (0.061)  -0.096 (0.052)  
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Table 9 (Cont’d.)        

Year Subgroup Algebra   Biology   

15-16 Black 0.078 (0.052)  -0.019 (0.043)  
15-16 Hispanic 0.069 (0.043)  -0.024 (0.029)  
15-16 White 0.1 (0.047) * 0.011 (0.036)  

16-17 Gifted 0.186 (0.088) * -0.033 (0.048)  
16-17 Special Needs -0.15 (0.149)  -0.202 (0.168)  
16-17 FRL 0.104 (0.039) ** 0.013 (0.033)  
16-17 LEP 0.167 (0.058) ** 0.059 (0.061)  
16-17 Black 0.113 (0.049) * 0.044 (0.045)  
16-17 Hispanic 0.123 (0.042) ** 0.024 (0.033)  
16-17 White 0.139 (0.052) ** 0.005 (0.048)  

17-18 Gifted 0.086 (0.085)  0.054 (0.048)  
17-18 Special Needs 0.215 (0.173)  0.266 (0.166)  
17-18 FRL 0.067 (0.043)  -0.056 (0.036)  
17-18 LEP 0.072 (0.060)  -0.124 (0.056) ** 
17-18 Black 0.077 (0.057)  0.019 (0.048)  
17-18 Hispanic 0.049 (0.043)  -0.075 (0.035) ** 
17-18 White 0.097 (0.057)  0.001 (0.040)  
* |t|>1.96, ** |t|>2.33, *** |t|>3.09 

     

Teacher Assignment 

We considered whether our results might be affected by the way teachers were selected to 
teach courses with high-stakes exams. Because of the very high stakes for schools and their 
personnel associated with these exams, one could expect principals to monitor past results carefully, 
and assign teachers with a good track record for raising student test scores to Algebra I and Biology 
(Dieterle, Guarino, Reckase, & Wooldridge, 2015). 
 We find evidence for such assignment bias, and it shows up in several ways. We constructed 
a two-stage model for the probability of being assigned to teach. The first stage of the model is 

Equation 1, which computes a value-added coefficient 𝑇 for every teacher. The second stage is a 
binomial logistic regression model that computes the probability a teacher was assigned to teach 
Algebra I or Biology as a function of the value-added score in the course in the same school the year 

before. Thus, the probability of being assigned (𝑎 = 1) to a course given value-added score T in the 
previous year and certification pathway StdCert is 

 

𝑃(𝑎|𝑇,StdCert) = 1/(1 + exp [−(𝑎0 + 𝑎𝑇𝑇 + 𝑎𝑐StdCert)]) .  (5) 
 

Here T is the value-added score we compute for each teacher normalized by the standard 
deviation of value-added scores and StdCert=1 corresponds to a teacher who came from a standard 
program. The coefficients of this model for Algebra I and Biology appear in Table 10. 

The results are significant every year. For example, if an Algebra I teacher from a standard 
program in 2011-2012 had a value-added score 1.5 standard deviations above the mean, they had a 
60% chance of returning to teach the course the next year as opposed to a 41% chance if their 
value-added score was 1.5 standard deviations below the mean. We also find that teachers from 
standard pathways were more likely to be reassigned to teach than those from alternative pathways, 
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after controlling for their value-added scores. Perhaps this is because department heads and 
principals saw something of value in their practice the scores did not capture. 

 
Table 10  
Probability of being reassigned to teach Algebra I or Biology in the same school given value-added score the previous 
year and certification pathway. Numbers in parentheses are standard uncertainties 

Year Discipline 𝒂𝟎   𝒂𝑻   𝒂𝒄   

2012-2013 Algebra I -0.20 (0.05) *** 0.20 (0.03) *** 0.18 (0.07) * 

2013-2014 Algebra I -0.08 (0.05) 
 

0.25 (0.04) *** 0.11 (0.07) 
 

2014-2015 Algebra I 0.06 (0.05) 
 

0.22 (0.03) *** 0.19 (0.07) ** 

2015-2016 Algebra I 0.03 (0.05) 
 

0.20 (0.04) *** 0.18 (0.07) * 

2016-2017 Algebra I 0.10 (0.05) * 0.26 (0.04) *** 0.22 (0.07) ** 

2017-2018 Algebra I 0.21 (0.04) *** 0.25 (0.04) *** 0.17 (0.07) * 

2012-2013 Biology 0.23 (0.04) *** 0.27 (0.03) *** 0.05 (0.07) 
 

2013-2014 Biology 0.25 (0.04) *** 0.28 (0.04) *** 0.20 (0.07) ** 

2014-2015 Biology 0.31 (0.04) *** 0.21 (0.04) *** 0.08 (0.08) 
 

2015-2016 Biology 0.36 (0.04) *** 0.25 (0.04) *** 0.27 (0.08) *** 

2016-2017 Biology 0.46 (0.04) *** 0.16 (0.04) *** 0.20 (0.08) * 

2017-2018 Biology 0.39 (0.04) *** 0.26 (0.04) *** 0.12 (0.08)  
* p<.05, ** p<.01, *** p<.001     

 
School principals and department heads did not of course have access to the specific value-

added scores we have computed, but they had in their possession all the raw data about student test 
scores that go into making them up and appear to have acted accordingly (Dieterle et al., 2015; 
Grissom, Loeb, & Nakashima, 2014).  

While value-added score was the strongest single predictor we found of whether a teacher 
was assigned twice in a row to teach Algebra I or Biology, many characteristics of the teacher 
population changed. It is worth nothing that the STAAR exams we use as a post-test were employed 
for the first time in the spring of 2012; at that time high school students were expected to take 15 
exams in order to graduate. In the spring of 2013, the Texas legislature reduced the required exams 
from 15 to 5 and abolished all the STEM exams but Algebra I and Biology. One result was a 
dramatic shift in the experience distribution of teachers assigned to Algebra I and Biology. In 2011-
2012, 35% of all Texas mathematics teachers had 0-5 years of experience (Ramsay, 2017a), and 39% 
of the Algebra I teachers had 0-5 years of experience. But by 2014-2015, when the percentage of 
Texas mathematics teachers with 0-5 years of experience was essentially unchanged at 37%, the 
percentage of Algebra I teachers with 0-5 years of experience dropped to 17%. As shown in Figure 
8, the drop-in novice Algebra I teachers was accompanied by a rise in teachers with 10-20 years of 
experience. Placement of biology teachers was equally well predicted by value-added scores, and the 
distribution of Biology teachers changed in a very similar fashion, from a distribution characteristic 
of science teachers overall, to a distribution greatly weighted towards teachers with 10 to 20 years of 
experience.  
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Figure 8. Distribution of teacher years of experience in Algebra I and Biology.  
Data from Texas Education Agency through Education Research Center 

 

Discussion 

Some previous studies have concluded that characteristics of teacher education are too small to 
detect or too small to matter in raising student test scores (Aaronson, Barrow, & Sander, 2007; 
Gordon et al., 2006; Harris & Sass, 2011; Rivkin et al., 2005; Staiger & Rockoff, 2010; von Hippel & 
Bellows, 2018). We found significant effects on the order of 0.03 to 0.05 standard deviations for 
ninth-grade students of Algebra I in favor of teachers with standard certification. Effects in Biology 
are weaker in the models with the strongest controls, although the occasional significant differences 
favor teachers with standard preparation. The pathway effects we find in Tables 5 through 9 are 
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small compared to the typical deviations between teachers and schools, although they are consistent 
with teacher pathway effects found in other studies (Boyd et al., 2009).  

Whether gaining 0.03 in standard deviation units is an important educational difference 
merits additional discussion. It corresponds to a 25% greater chance of getting one more problem 
right on a 50-question exam, since the standard deviation on the exam is 0.16 x 50=8 questions, and 
3% of that is a quarter of a question. This may seem too small to matter. However, if sustained over 
time, the magnitude of this effect is comparable to that of living in poverty. For example, in Tables 5 

and 6, the coefficient for EcoDis, free and reduced lunch eligibility, is around −0.07. As an 
additional illustration, Figure 9, employing methods of (Bendinelli & Marder, 2012) shows that if 
one groups students according to their mathematics scores and free/reduced lunch status in fourth 
grade, and then follows the students through 11th grade, the difference between the well-off and 
low-income students develops to around 0.06 in standard deviation units and it takes around three 
years to develop. That is, the difference in test score results due to having a math teacher from a 
standard program for a year is of the same order as the effect on test results over a year associated 
with living in poverty. One could conclude that the standardized tests are not very sensitive either to 
instruction (Popham, 2007; Stroup, 2009) or to poverty, but this does not mean the tests are 
completely incapable of detecting them. 

 

Figure 9. Mathematics exam averages in standard deviation units over time for cohorts of students 
from the Class of 2011 grouped both by their scores in 4th grade, and by their free/reduced lunch 
status. The graph tracks the students grade by grade over time  
Data from Texas Education Agency through Education Research Center 

 
Because the tests are not very sensitive to what we wish to measure, it takes a large number 

of teachers and students to arrive at reliable values. As seen in Tables 5 and 6, for a single teacher 
teaching multiple sections of the same class at the same time, the typical variation from one section 
of the class to another is around 0.18 standard deviations. We estimate that to find the effect of any 
particular type of teacher preparation pathway with uncertainty less than 0.03 standard deviations, 
one must average results from around 1000 teachers. We accomplished this by aggregating together 
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preparation programs in groups with similar practices rather than focusing on effects at the level of a 
single program. Such grouping also is a feature of the study of National Board certification in 
Cowan and Goldhaber (2016), and of pathways in New York City by Boyd et al. (2009).  

Overall Algebra I teachers from standard certification pathways improved student test scores 
by 0.03 to 0.05 standard deviations. For subgroups including gifted students, students eligible for 
free and reduced lunch, and Black and Hispanic students, students of standard teachers gained 0.03 
to 0.08 standard deviations. In Biology the evidence for positive effects for teachers from standard 
programs overall is not robust, although there are scattered positive results on the order of 0.03 
standard deviations in Table 8 for teachers with up to 20 years of experience, and mainly positive 
but also some negative results in Table 9 for novice teachers. The columns in Table 6 for Models 1a 
and 1b also find significant test score gains for Biology students of teachers from standard 
programs. These are the models based on the assumption that the main reason students in some 
schools have higher scores is that the teachers are better. 

We also find, as often found before, that there is more variation of student outcomes within 
teacher preparation pathways than between. This finding has been used in support of policies that 
reduce barriers for new people to enter teaching, but make it difficult for them to continue unless 
they can demonstrate favorable student outcomes (Gordon et al., 2006). While such policies might 
make sense in cases where there are more people wishing to become teachers than there are 
positions available, they are less justifiable for shortage areas such as secondary STEM. It is hard to 
imagine that young people or career changers will be attracted to secondary teaching by the prospect 
of having tenure and merit decisions made by value-added models. Newspaper accounts such as 
those of Bonner (2016) conclude that use of value-added scores for merit and promotion has been 
exacerbating teacher shortages. Teacher shortages may not directly impact high-stakes subjects such 
as Algebra I and Biology; schools have to staff them or face severe penalties. Shortages show up for 
subjects such as computer science where there are no high-stakes assessments, and where only a 
small fraction of high schools even offer a course (Guzdial, n.d.). It is tempting to consider policies 
that make it difficult for teachers with low value-added scores to continue teaching altogether, in 
hopes of capturing some of the 0.18 standard deviations advantage for the best teachers in Tables 5 
and 6. However, reducing the stability of teaching careers will impact which individuals decide to 
enter teaching or settle instead on other careers. There is no assurance that secondary students will 
benefit in the end. 

We remark in passing that our model estimates in Tables 5 and 6 contain interesting results 
beyond those directly pertaining to teacher certification pathway. For example, both in Algebra and 
Biology, a student identified as Economically Disadvantaged gains about 0.07 standard deviations 
less per year than one who is not. However the effect of poverty concentration is larger; in Algebra 
I, a class where none of the students is Economically Disadvantaged gains 0.09 standard deviations 
in comparison with a class where all the students are disadvantaged, and in Biology concentrated 
poverty can be responsible for a drop as large as 0.17 standard deviations. This observation should 
be taken into account in connection with studies of school choice involving lotteries (Angrist, Hull, 
Pathak, & Walters, 2017) because it estimates the effect students have on each other. If charter 
schools concentrate students with supportive families independent of ethnicity and economic need, 
then effects attributed to school organization and pedagogy might instead be due to influence of 
students on each other. Comparing charter school students to students denied admission by lottery 
back in the regular public schools does not address this problem. 

The change we found in teacher assignment over time provides reason to worry about how 
high-stakes tests are being used. The tests were designed to measure student mastery of academic 
material. They are now being used to allow students to advance academically, to judge the 
performance of individual teachers, to judge the performance of schools and school administrators, 
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and finally to judge the programs that prepare the teachers. For test results to provide an unbiased 
estimate of preparation programs, principals would have to ignore teachers’ track record when 
assigning them to classes with high stakes assessments, even when the future of both students and 
the administrators are at risk, and when administrators are constantly impressed with the importance 
of data-driven decision making (Houston, 2013). This is not realistic. 

It has frequently been stated that that variance between classrooms within schools is larger 
than variance between schools (Nye, Konstantopoulos, & Hedges, 2004). Staiger & Rockoff (2010, 
p 103) conclude that “School leaders have very little ability to select effective teachers during the 
initial hiring process” and present as evidence “the fact that most of the variation in teacher effects 
occurs among teachers hired into the same school.” Our results are different. In Tables 5 and 6, 
variation between schools is the largest random effect, followed by variation between teachers in 
schools, then followed by different classrooms of the same teacher. Thus, if we take into account 
both the variance between schools and the way we found teachers to be assigned, evidence indicates 
that principals hire teachers and assign them to classes based on information about their 
effectiveness. 

This point may be particularly significant. The parallel teacher preparation system in Texas, 
spreading now to other states, represents an evolution of systems that enabled the growth of New 
York City Teaching Fellows and Teach for America (Darling-Hammond, Holtzman, Gatlin, & 
Heilig, 2005; Laczko-Kerr & Berliner, 2002). These programs were intended to demonstrate that 
smart students carefully chosen and rapidly prepared could obtain better student results than 
conventionally prepared teachers(Clark et al., 2013; Decker et al., 2004). The scale at which this 
could be carried out has had limits because it depends upon philanthropic contributions of hundreds 
of millions of dollars per year (Education Week, 2016). Texas-style alternative certification does not 
have this limit because companies have established a viable business model where in-service 
candidates pay the program costs. The quality control provided by Teach for America selection 
criteria appears to be missing, but that impression is almost certainly mistaken. It is instructive to 
examine accountability reports for the educator preparation programs (Texas Education Agency, 
2018). In 2016-2017 the two largest alternative programs had over 30,000 applicants, admitted about 
14,000 of them, had over 55,000 listed as program participants without having completed, and of 
those around 7000 had positions in schools. This indicates that district human resource departments 
and school principals are quite selective in whom they take from the alternative programs. The 
selection is based upon interviews and upon a more extensive examination of a candidate’s vita than 
is apparent in any state datasets. The hiring process plays a critical role in mediating between 
preparation programs and student outcomes. 

Conclusions 

Our results lead to nuanced policy prescriptions, and in particular we must distinguish 
between implications in Texas and implications for other states. In Texas, the differences we found 
for students in Algebra I and Biology because of their teachers’ pathway do not justify disruptions 
that would come from an abrupt policy change impacting alternative certification programs. As 
alternative certification developed steadily over the last 20 years to become a major contributor to 
Texas’ teacher supply, the schools learned how to hire and assign teachers to increase student test-
score gains. In Algebra I there are many subgroups of students for whom the advantages of having a 
teacher from a standard university program are significant, but in Biology the effects are weaker. 
One must keep in mind because of the shortage of STEM teachers that it is difficult to justify 
reducing teachers from any pathway. Slightly increasing the scores of low-income students on 
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Algebra I exams but reducing the number able to take Physics or Chemistry at all would almost 
certainly be a very poor trade.  

On the other hand, our results do not provide strong incentive for other states to follow 
Texas’s lead in establishing a large for-profit alternative certification sector. As shown in Figures 3 
and 4, the growth of alternative certification in Texas since the early 2000s has not led in the end to 
an increase in the production of STEM teachers. At best it has stemmed the decline. And if 
alternative certification were to grow much more rapidly in other states, as a disruptive innovation 
(Christensen, 1997), than it has in Texas, based on the for-profit companies’ experiences but without 
corresponding ability in schools to select alternatively certified teachers wisely, the results might be 
quite different.  

Caution is merited on all sides. Texas should be cautious about damaging the ecosystem that 
developed over the past two decades to prepare teachers. Other states should be cautious about 
rapidly introducing a parallel for-profit teacher preparation system that competes with universities. 
University faculty engaged in teacher preparation should be cautious about ignoring or dismissing 
alternative pathways with the capacity to prepare huge numbers of teachers in new ways, and be 
attentive to the ways that school hiring practices impact quality. 

Around 700,000 undergraduates obtain STEM degrees from U.S. universities each year. This 
is an enormous pool; persuading just 1.5% more to obtain a teaching certificate along with their 
degree each year would add over 10,000 new STEM teachers. On balance, our evidence says the 
standard way of preparing teachers at universities in person is still the best. Teachers from standard 
pathways stay in teaching longer and their students learn more. If alternative certification does 
expand to ameliorate shortages, let this happen slowly and carefully. In view of the substantial extra 
time students spend preparing in standard pathways before full-time teaching, universities should 
consider what lessons can be learned from the alternative programs. At the same time, we urge 
renewed support for the preparation of STEM teachers through standard university pathways as the 
most efficient, scalable, and high-quality way to address the critical need for improved STEM 
education and to address the shortage of STEM teachers. 
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