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Abstract

Performance assessments have come upon two major roadblocks: low

reliability coefficients and high cost. Recent speculation has posited that
the two are directly related such that cost must rise in order to increase
reliability. This understanding may be an oversimplification of the

relationship. Two empirical demonstrations are offered to show that
more than one combination of sources of error may result in a desired
generalizability coefficient and that it is possible to increase the number

of observations while also decreasing cost.

        The movement toward performance assessments for large-scale assessment purposes

has encountered two major obstacles: first, such assessments have difficulty demonstrating
highly reliable scores, and second, they tend to be very expensive. How these two problems
are thought to be related influences the proposed solutions. This in turn will directly affect

policies about the use of such assessments. 
        The problem of poor reliability in performance assessment scores stems from the lack
of agreement among tasks, raters and other sources of measurement error. This is exhibited
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in a variety of types of performance assessments by several concurrent lines of inquiry,
including: those by Shavelson and colleagues (e.g. Shavelson and Baxter,1992; and
Shavelson, Baxter, and Gao, 1993); those from the Vermont Portfolio Assessment program

(e.g. Koretz, Klein, McCaffrey, and Stecher, 1994; Koretz, Stecher, Klein, and McCaffrey,
1994; and Koretz, Stecher, Klein, McCaffrey, and Deibert, 1994); and one by McWilliam
and Ware (1994). 

        Shavelson and colleagues have worked primarily with performance assessments in
elementary level general science. By using the framework of generalizability theory, they
have demonstrated that the greatest contributing facet to low generalizability coefficients is

the task (e.g. Shavelson, Baxter and Gao, 1993). Furthermore, they project that by increasing
the number of tasks a higher generalizability coefficient will result. Koretz and colleagues
have worked with portfolio assessments of math and writing and identified raters and tasks

as sources of error variance (Koretz, Stecher, Klein, McCaffrey, and Deibert, 1994). They,
too, explore the possibility of increasing the number of tasks and the number of raters to
achieve a more acceptable estimate of reliability. McWilliam and Ware (1994) examined the

assessment of young children's engagement, and identified the number of sessions or
observations as being a large source of error variance. They estimated the minimum number
of sessions that would be necessary to create an acceptably reliable assessment. 

        A second major concern with performance assessments is their high cost (Picus, 1994).
Performance assessments are widely believed to be more expensive than multiple-choice
testing (Catterall & Winters, 1994; Hardy, 1996; Linn, Baker & Dunbar, 1991; U.S. General

Accounting Office, 1993), though the costs of performance assessments will vary
considerably based on the exact nature of the assessment (Monk, 1996; U.S. General
Accounting Office, 1993). Reckase (1995) demonstrated that it is possible to produce a

writing portfolio assessment procedure that meets current standards of psychometric quality;
but such a procedure, compared to current multiple-choice methods, would be a "very
expensive alternative (p. 14)." White (1986), however, holds that, when designed properly, a

direct assessment of writing can be conducted with comparable expense to that of
multiple-choice assessment. This divergence notwithstanding, White (1986) recognized that
the expenses are different for the two forms, the money being used mostly for raters in a

direct assessment of writing. Hoover and Bray (1995) to some extent validated this claim by
showing that the Iowa Writing Test could be conducted for approximately the same cost as
the Iowa test of Basic Skills, albeit the former covered a much smaller domain than the

latter. 
        These two problems of low reliability coefficients and high cost in performance
assessment are often directly linked. If the solution to low generalizability is to increase the

number of tasks, raters, etc., then the cost must also increase (e.g. Picus, 1994). There are a
number of issues, however, that make this more complicated than it first appears. 
        The first issue is the automatic acceptance of the direct relationship between the

number of observations in an assessment and the reliability of scores from that assessment.
This acceptance is promulgated by a long history with the Spearman- Brown Prophecy
Formula used to address this issue with objective item assessments. In a multiple-choice

test, it is possible to estimate the number of items necessary to reach a desired reliability
coefficient. For example, if a test contains 50 multiple-choice items and the reliability
coefficient for scores from that test is 0.76, the Spearman-Brown Prophecy Formula can be

employed to estimate how many items would need to be added to increase the reliability
estimate to 0.85. There is direct (though asymptotic) relationship between the number of
items used and the magnitude of the reliability coefficient. In a performance assessment,

however, the relationship between a reliability estimate and the number of observations is
more complicated because there are more sources of error. In a multiple-choice test, the
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items represent the only source of error. In a performance assessment, tasks, raters,
occasions and potentially many other sources of error are possible. The implication is

twofold. First, there may be more than one combination of raters, tasks, etc. that will result
in a reliability estimate of a given magnitude. Second, it is possible that fewer observations
could lead to a larger estimate of the reliability of scores from a performance assessment.

Therefore, it is no longer axiomatic that increasing reliability means adding more
observations. 
        The second issue is that cost and reliability are seldom addressed simultaneously. By

and large this is due to the methodologies employed for such projections. In an assessment
procedure with multiple sources of error, the most common projective technique is a
liberalization of the Spearman-Brown Prophecy Formula, the decision study, or d-study

from the generalizability theory framework. The d-study approach to addressing the joint
issues of cost and reliability is less than desirable in a couple of ways. 
        D-studies are often done one at a time by considering different combinations of sources

of error. That means that when the first combination to reach the desired reliability estimate
is reached, the process stops. If there are several combinations of sources of error that would
satisfy the desired reliability threshold, they probably would not be uncovered in this

manner. 
        The d-study approach does not take cost information into consideration, which leaves
the direct relationship between the number of observations and cost to dictate the best

combination of sources of error. Assuming that d-studies are conducted in such a manner
that multiple combinations of sources of error are identified, all meeting a minimum
reliability estimate, the one with the fewest total observations is likely to be selected for

implementation. It might be possible that more total observations could actually be less
expensive. Without explicitly examining cost information, there is no way to know for sure. 
        The goal should be an optimal assessment design where optimal is defined as the most

reliable and least expensive. There is a technique that allows all of these issues to be handled
simultaneously in one analysis. Sanders, Theunissen, and Baas (1989, 1991, 1992) proposed
the use of a branch-and-bound integer programming algorithm which searches for and

identifies the optimal number of levels for each facet while taking into account each facet's
contribution to the generalizability coefficient and each facet's cost as well as any other
practical constraint. This technique appears to be promising. It can exhaustively search all

possible combinations of levels of facets, within given parameters, something that could be
a daunting task to perform "by hand" using only psychometric constraints. Thus it gives
reasonable assurance that the optimal solution has been located. 

        A second advantage of this technique is that it can accommodate a wide variety of
logistical, economic, or other constraints. So cost data and reliability data, as well as other
relevant issues, can be used simultaneously to define an optimal assessment design. 

        These issues and procedures will now be demonstrated using two different studies. The
first study concludes that, depending on the definition of "optimal," there are many possible
best combinations of facets to produce a predetermined generalizability coefficient. The

second study produces data supporting the Sanders, et al. (1991) statement that it is possible
to decrease the number of observations and/ or the total cost while increasing the
generalizability coefficient. Both studies are based on the same set of data.

The Optimization Studies

        Subjects. Fifty subjects enrolled in an undergraduate educational psychology class
participated in the study. Twenty- eight percent of the sample were males and seventy-two
percent were females. The sample also contained a mix of White, Asian- American, and
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Hispanic subjects. By class, the sample consisted of freshmen (20%), sophomores (52%),
juniors (21%), seniors (5%), with the remainder unidentified. The sample had taken an
average of 1.26 writing courses with a range from 0 to 3. 

        Procedures. Each subject read three articles—one about instructional approaches, and
two articles about performance assessments—prior to attending the first of two 2 1/2 hour
sessions. During the first session, subjects filled out a demographic questionnaire and wrote

a separate 300 to 500 word essay about each of two prompts. During the second session,
subjects wrote the other two prompts. In total, they wrote an expressive piece and a
persuasive piece about the instructional approaches and an expressive piece and a persuasive

piece about performance assessments. Four different orders of the prompts were
counterbalanced to allow investigation of practice effects or other effects that may arise by
writing the essays in a particular order. 

        Scoring the essays. Three graduate students in Educational Psychology served as raters
and were trained. These raters were given the scoring rubric and discussed it; then, they
scored a sample paper as a group. Using a slightly modified version of the Diederich scale

(Diederich, 1974), each rater then read all 200 pieces of writing. The seven items on the
scale were summed to achieve each subject's score on each piece of writing.

The Variance Models

        The studies are based on a three-facet mixed design: mode of discourse (m), writing
prompt (p), and rater (r). The object of measurement is student's overall writing ability (s). In
the data collection design, prompts are nested within mode (i.e., p:m) and both cross raters

and students. In the generalizability framework, the variance model is:

The variance components for the sample in this study were estimated using the GENOVA

software program (Crick and Brennan, 1983). Based on a review of the literature on modes
of discourse (Crusius, 1989), there are at most five modes in existence. Therefore, for the
estimation of variance components, the universe of modes was defined as having 5 levels.

For all other facets, the universes were defined as infinite. The variance components
estimated are shown in Table 1.

Table 1

Estimated Variance Components for Studies One and Two

Source of variation Variance components

Subject (s) 5.8275728

Mode (m) 0*

Prompt:mode (p:m) 0*

Rater (r) 5.6756912

sm 0*

s(p:m) 2.6025238
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sr 0.6714422

smr 0.3008503

sr(p:m) 11.8791415

*Note. Negative variance components were set equal to zero, following Brennan (1992).

        For all subsequent optimization analyses, the relative model of measurement was used
wherein the relative error variances were estimated through:

where nr, nm, and np are the number of raters, modes, and prompts respectively.

        The G-coefficient of interest was therefore:

Study One

        In this study, results of a generalizability study and data describing the number of
person-hours necessary to score the assessment have been used. Four different scenarios are

presented, each with a different set of constraints, each producing a different optimal
solution. The first scenario optimized the problem using only psychometric constraints; the
second took a relative human factor constraint into consideration; the third used a specific

human factor constraint; and the fourth used specific economic constraints.

The Optimization Scenarios

        A branch-and-bound integer programming algorithm, a linear programming technique,
was employed to estimate the optimal combination of raters, prompts within modes, and

modes themselves. This investigation used the solver function of Microsoft EXCEL, version
5.0, to execute the algorithm. For all four scenarios, the variance components from Table 1
were entered into the worksheet. All four scenarios investigated shared a common objective

function and a common set of constraints. In Scenarios 2, 3, and 4, additional constraints
were considered. The common problem to be solved across all scenarios is:

Objective Function:

Minimize L = nm np:m nr ; (4)

Subject to:
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                nm< or = 5, (6)

                nm np:m nr are integers, (7)

                and nm, np:m, and nr > or = 1. (8)

        The objective function is to minimize the total number of observations needed.
Constraint (5) specifies the minimal acceptable level of a generalizability coefficient.
Constraint (6) specifies that there are no more than 5 possible modes of discourse.

Constraints (7) and (8) ensure that solutions will be positive whole numbers. 
        In Scenario 1, the objective function defined in (4) subject to constraints (5) through (8)
was submitted to the branch-and- bound search algorithm. The results of this search can be

found in Table 2, which shows that, to attain a g-coefficient of at least 0.8, the minimum
numbers are 4 modes with 2 prompts each while employing two raters to score each prompt
in each mode. Based on data obtained from the sample, the average time needed to rate each

prompt in each mode in this study was 0.092 hour (approximately 5.5 minutes). The total
amount of time needed to rate the writings from ns subjects under any given scenario is then:

                Total person-hours = nm np:m nr ns(.092) (9)

        Applying Equation (9), the total person-hours needed for Scenario 1 for 50 subjects is

73.6.

Table 2

Results of Study One

Number of Cases Needed to Meet the Constraints

 Actual
Scenario 

1

Scenario 

2

Scenario 

3
Scenario 4

Additional 

Constraints
  nr≥

nm(np:m)

nm(np:m)≤

6

nm(np:m)nr(50)(.092)≤

60 person-hours

nm(np:m)nr(50)(.092)≤

70 person-hours

Mode 2 4 1 1 4

Prompt: Mode 2 2 4 6 2

Rater 3 2 5 3 2

Obj. Function 12 16 20 18 16

Manhours 55.2 73.6 92 82.8 73.6

G Coefficient 0.75 0.80 0.80 0.80 0.80
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        An apparent practical problem with Scenario 1 is the demand on the examinee. A better

solution might be one in which the burden of reliability is shifted away from the demand on
the examinee to a demand on ratings per piece of writing. In Scenario 2, a new constraint
was added to shift this demand to ratings. The additional constraint and the results can be

found in table 2. To attain a g-coefficient of at least 0.8 while minimizing the burden on the
examinee, the minimal design is one in which each examinee responds to 4 different
prompts in a single mode of discourse. Each piece of writing needs to be rated by 5 raters.

Under this scenario, the total number of writings from each examinee is only four. However,
the total amount of person-hours needed for the rating of 50 subjects increases to 92 person-
hours. 

        In Scenario 3, a compromise between Scenarios 1 and 2 was investigated by
constraining the total number of pieces to six or less (see table 2). Under this scenario, each
examinee must produce 6 pieces of writing in a single mode. On the other hand, only 3

raters are needed for each piece to attain a g-coefficient of 0.8 or higher. The total
person-hours for 50 subjects in this case is 82.8. 
        Scenario 4 investigated the cost factor. The lowest number of person-hours so far has

been 73.6 in Scenario 1. Scenario 4 attempted to explore the possibility of a person-hour
estimate lower than that. Table 2 illustrates the two constraints attempted, neither of which
produced a feasible solution. In other words, it is not possible to expend less than 70 person-

hours of rating activities to rate the writings used in this study for 50 subjects and still
maintain a minimum g-coefficient of 0.8.

Conclusions from Study One

        In a single-facet measurement situation, a multiple-choice exam for example, there is

only one source of error to draw on to increase a reliability coefficient: items. So a
one-to-one relationship exists between the number of the facet and the reliability coefficient:
as the number of items increases, so does the reliability coefficient, albeit the relationship is

asymptotic at some point. Also, there is a unique minimum number of items that will satisfy
the desired reliability coefficient. For example, if a 50-item exam has a reliability coefficient
of 0.69, the Spearman-Brown Prophecy Formula may indicate that in order to achieve a

coefficient of 0.90, 83 items are needed. In a multi-faceted situation like the one represented
here, the relationships are not so clear. With multiple facets, each contributing unequally in
proportion to the size of its variance component to the generalizability coefficient, there is

no simple one-to-one relationship. Scenario 1 uses psychometric constraints alone (as the
Spearman-Brown Prophecy Formula or other projective techniques would) yet mode
changes by 2 units, prompt within mode does not change, and raters decreases by one unit.

Thus, in multi-faceted situations using only psychometric criteria, the relationship between
the facets and the generalizability coefficient is not straightforward or simple. 
        Neither in a multi-faceted situation is there one combination which will uniquely fulfill

the predetermined generalizability coefficient. The first step is to define optimal in some
way. The optimization procedure allows a great deal of latitude in doing so. The four
scenarios taken together demonstrate that there are many optimal combinations that will

fulfill the predetermined generalizability coefficient.

Study Two

        The second study is similar to the first except that instead of using person-hours as the
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economic constraint, it employs dollar figures. Second, instead of minimizing the total
number of observations in order to constrain costs, it uses total cost as the objective
function. The variance model in Study Two is the same as that in Study One.

The Cost Data

        The cost data for this study are taken from Hoover and Bray (1995), who report on cost
information for an administration of the Iowa Writing Assessment. The assessment tested
the writing skills of 30,000 school students from grades three to twelve, each of whom wrote

two pieces of writing. Each sample was scored twice holistically and twice analytically. For
this assessment, Hoover and Bray estimate that $138,000 was spent in developing the 40
writing prompts; $174,410 was spent to score the prompts; and $30,000 was spent for

materials. This breakdown is consistent with a framework for examining costs explained by
Hardy (1996). In order to use this information in the optimization procedure, base units of
development, scoring and materials need to be developed. That is, figures need to be

obtained that indicate how much adding one rating (for example) to the scenario will change
scoring costs, or how much adding one prompt will change development and scoring costs.
The cost of development hinges on the total number of prompts developed—in Hoover and

Bray (1995), 40—therefore, each prompt costs $3450 to develop ($138,000/40). In that
study, each examinee wrote two prompts. Had each written only one prompt, presumably
only 20 prompts would have been developed. Therefore, the $3450 is divided by 2, the

number of prompts each examinee responded to, producing a cost per prompt required of an
examinee of $1725. So that represents the base unit cost for development. Therefore, the
development cost function is

$1725np:mnm, 

       where p:m is the number of prompts each person must write per mode 

        and nm is the number of modes.

        To obtain the base unit cost for scoring, the total scoring cost ($174, 410) was divided
by the number of subjects (30,000), the number of pieces per subject (2), and the number of
raters or readings per piece (2) to produce a unit scoring cost of $1.43 per piece, per rater,

per subject. The materials were estimated to cost $1.00 per subject. For the purposes of these
analyses, the number of subjects was held constant at 50. Therefore, the total cost function,
combining development, scoring and material costs, is:

Total Cost = $1725np:mnm + $1.43np:mnmnrns + $1.00ns (10)

The Optimization Problem

        The variance components from Table 1, the cost function given in equation (10), and
the number of prompts within modes, modes, raters, and subjects were entered into the

EXCEL worksheet, and the following optimization problem was submitted for analysis.

Objective Function:

Minimize L = Total Cost = $1725np + $1.43npnrns + $1.00ns, 

subject to constraints (5) through (8) given in Study One.

(11)

        The results are given in Table 3. Since the procedure was minimizing cost not the
number of observation points, the optimal design includes more observation points (27
versus 12) but at less cost and a higher generalizability coefficient.
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Table 3

Results of Study Two

Number of Cases Needed to Meet the Constraints

 Actual Optimal

Mode 2 1

Prompt:Mode 2 3

Rater 3 9

Obj. Function 12 27

Total Cost $7808 $7156

G Coefficient 0.75 0.80

  

Conclusions from Study Two

        This second study provides empirical support for the claim made by Sanders,
Theunissen, and Baas (1989) that it is possible to decrease cost while increasing the
generalizability coefficient even when the total number of observation points increases.

Discussion

        These studies serve as illustrations of the issues raised in the introduction. The first
study demonstrates that it is possible to have many combinations of facets in an assessment
design meet some predetermined level of reliability coefficient. The second study

demonstrates the advantages of simultaneously considering cost and reliability data in the
same analysis, namely, that it is possible to achieve a more reliable but less costly design. 
        Both of these points need to be taken in consideration during discussions about the cost

implications of various solutions to the low reliability problem associated with performance
assessment scores. If we assume that the only way to increase the reliability is to increase the
number of observations and/ or we assume that increasing reliability will automatically

increase cost, these stumbling blocks will not be removed. Policy makers will continue to be
very reluctant to choose performance assessments as parts of their assessment plans. 
        These demonstrations represent a narrow perspective though and were designed to

demonstrate only the two issues already mentioned. They are narrow in two ways. First, they
may oversimplify the estimation of true costs of performance assessments. Second, they
address only reliability and cost and not other concerns. 

        The costs associated here with performance assessments are expressed in dollars and
cents and are rather simple. For example, development costs would change depending on the
number of examinees (Parkes, 1996). More examinees would require that more prompts be

developed and the cost would probably change in some exponential fashion. This
relationship is held constant by assuming the same number of examinees in each scenario.
There are also many other ways to conceptualize cost, some of which would be very difficult
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to quantify. Monk (1996) and Picus (1994) describe the difficulties in determine the actual
"costs" of a performance assessment. There are, of course, the financial expenditures
associated with an assessment system. But more nebulously, there will be expenditure of

time by students, teachers, and administrators to conduct these assessments. There is also
cost in terms of what curriculum changes are made to accommodate the testing. That is,
what would students be learning in the time taken for assessment. 

        The studies reported here are also narrow in that they address only reliability and cost
and not other concerns. And there are plenty of other considerations that are equally as
important or more important in the design of a performance assessment besides reliability

and cost. The content sampling issue is one of these. Deciding how many tasks should
constitute an assessment should probably be addressed in terms of content coverage first.
Though certain constraints could be added to an optimization problem to account for content

coverage issues, it probably not best to handle the issue in that manner. This approach treats
each facet of the design equally or weights it based on its contribution to error variance. It
therefore works on the implicit assumption that one rater means essentially the same thing as

one task, which means essentially the same thing as one occasion, etc. But raters and tasks
and occasions all serve different purposes in the assessment and contribute different things
to the construct validity of the scores. So to trade three tasks for five ratings is, at best,

contrived. 
        These issues provide a necessary context for the studies reported here but should not
distract attention from the two central issues of this paper. First, more than one combination

of sources of error may result in a desired generalizability coefficient. Second, it is possible
to increase the number of observations while also decreasing cost.

Conclusion

        The notion that only one design will generate a g-coefficient of a given value is not

accurate. There are many possible combinations of facets, depending on how the optimal
solution is defined, that will meet a desired g-coefficient value. The relationship between an
assessment design and a corresponding generalizability coefficient needs to be more broadly

understood. 
        The inference that generalizability coefficients and the number of observations are
directly related is inappropriate. It is possible that several different designs would achieve

acceptable generalizability coefficients. Similarly, a direct relationship between cost and
reliability is not exact. Study Two shows that it is possible to increase the generalizability
coefficient and the number of observations while decreasing the total cost of the assessment.

        The bottom line for policymakers and those involved in performance assessment
programs is that it is theoretically possible to have both a reliable and cost-effective
performance assessment system. Assuming that low cost is the "line in the sand," those

developing performance assessments should not assume that means they must minimize the
number of ratings or the number of pieces in an assessment. Indeed, increasing certain
aspects, like ratings, might actually end up being cheaper and still produce more reliable

scores.
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