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This work uses methods from social network analysis and logistic regression to investigate how 
course-taking patterns in Texas charter and non-charter schools either promote or constrain student 
engagement within the STEM disciplines by: 1) exploring STEM course offerings in Texas charter 
and non-charter public secondary schools; and 2) identifying students’ STEM course-taking patterns 
in these schools. Findings suggest charter schools are less likely than non-charter public schools to 
offer STEM courses tailored for special education students and that charter school students’ course-
taking patterns tend to be either slightly more advanced or more basic than the course-taking 
patterns of students in non-charter schools. In addition, students in charter schools tend to be more 
mobile (e.g., transfer between schools) than students in non-charter public schools. 
Keywords: Charter schools; STEM course taking; STEM curricula; School choice 

¿Cómo experimentan los estudiantes la elección? Explorando las ofertas de cursos 
STEM y patrones de curso en las escuelas públicas charter y no charter de Texas 
Resumen: Las escuelas charter están posicionadas por los proponentes como un 
componente clave de los esfuerzos de reforma que se esfuerzan por expandir las opciones 
de escuelas. Informes influyentes de las últimas tres décadas han destacado la necesidad de 
mejorar la preparación de los estudiantes en STEM, y las escuelas charter han surgido 
como una reforma con el potencial de hacerlo. Este trabajo utiliza métodos de análisis de 
redes sociales y regresión logística para investigar cómo los patrones de cursos en las 
escuelas charter y no charter de Texas promueven o limitan la participación de los 
estudiantes dentro de las disciplinas STEM al: 1) explorar las ofertas de cursos STEM en 
las escuelas charter y no charter de Texas. escuelas secundarias públicas charter; y 2) 
identificar los patrones de cursos STEM de los estudiantes en estas escuelas. Los hallazgos 
sugieren que las escuelas charter tienen menos probabilidades que las escuelas públicas no 
charter de ofrecer cursos STEM diseñados para estudiantes de educación especial y que los 
patrones de cursos de los estudiantes de escuelas charter tienden a ser un poco más 
avanzados o más básicos que los patrones de cursos de los estudiantes en escuelas que no 
son charter. Además, los estudiantes de las escuelas charter tienden a tener más movilidad 
(e.g., la transferencia entre escuelas) que los estudiantes de las escuelas públicas no charter. 
Palabras-clave: escuelas charter; tomando cursos STEM; Currículos STEM; Elección de 
escuela 

Como os alunos experimentam a escolha? Explorando ofertas de cursos STEM e 
padrões de curso em escolas públicas charter e não charter do Texas 
Resumo: As escolas charter são posicionadas pelos proponentes como um componente-
chave dos esforços de reforma que buscam expandir a escolha escolar. Relatórios 
influentes nas últimas três décadas destacaram a necessidade de melhorar a preparação dos 
alunos em STEM, e as escolas charter surgiram como uma reforma com potencial para 
fazer isso. Este trabalho usa métodos de análise de rede social e regressão logística para 
investigar como os padrões de cursos nas escolas charter e não charter do Texas 
promovem ou restringem o envolvimento dos alunos nas disciplinas STEM ao: 1) explorar 
as ofertas de cursos STEM no Texas charter e não escolas secundárias públicas charter; e 
2) identificar os padrões de cursos STEM dos alunos nessas escolas. As descobertas
sugerem que as escolas charter são menos propensas do que as escolas públicas não
charter a oferecer cursos STEM adaptados para alunos de educação especial e que os
padrões de cursos dos alunos de escolas charter tendem a ser ligeiramente mais avançados
ou mais básicos do que os padrões de cursos dos alunos em escolas não charter. Além
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disso, os alunos das escolas charter tendem a ser mais móveis (e.g., transferência entre 
escolas) do que os alunos das escolas públicas não charter. 
Palavras-chave: Escolas charter; fazendo cursos STEM; Currículos STEM; Escolha da 
escola  

Introduction 

Since charter schools were first established in the United States in the early 1990s, the 
number of charter schools and the number of students enrolling in them have steadily increased. 
According to the National Alliance for Public Charter Schools (NAPCS), over 3.2 million students 
were enrolled in roughly 7000 charter schools operating nationwide during the 2016-2017 school 
year (NAPCS, 2018). Charter schools are publicly funded schools that in most cases operate 
independently of local school districts. Charter school proponents argue that independence from the 
traditional public-school system and autonomy over curriculum, financing, and staffing allow charter 
schools to innovate and develop novel educational models that promote student achievement more 
effectively than non-charter public schools (Bierlein & Mulholland, 1994; Guggenheim, 2010). 
Guided by this notion, charter schools have received bipartisan support. A number of grant 
programs offered through the Department of Education’s Office of Innovation and Improvement, 
established during Obama’s presidency, are geared towards opening and expanding charter schools 
(Anderson, 2018). More recently, Secretary of Education Betsy DeVos established grant funding 
guidelines aimed at expanding charter schools and school choice nationally, citing the need to 
provide families with alternatives to their neighborhood schools and empower families to enroll 
children in schools best suited to their students’ needs (DeVos, 2017). Thus, the growth of charter 
schools is unlikely to slow any time soon. 

Extant quantitative research has explored the impacts of charter schools on student 
outcomes, focusing on student achievement on standardized exams (Clark et al., 2015; Curto & 
Fryer, 2014; Gleason et al., 2010; Toma & Zimmer, 2012; Tuttle et al., 2012; Winters, 2012; Zimmer 
et al., 2012) in addition to college enrollment and labor market outcomes (Dobbie & Fryer, 2016). 
Qualitative studies have explored how the introduction of market principles and competition to the 
public education sector has impacted the public education system in unintended ways (Jabbar, 2015, 
2016; Lubienski, 2003; Winters, 2012). Despite the breadth of literature on charter schools, there is 
little consensus about the effects of charter schools on student outcomes. Therefore, scholars 
advocate investigating the underlying conditions, such as ability grouping practices, that may explain 
observed differences in student outcomes between charter and non-charter public schools (Berends, 
2015; Berends & Donaldson, 2016). 

In contrast to comparative studies exploring student achievement differences by school 
sector, Berends and Donaldson (2016) explored how ability grouping in charter and non-charter 
schools influenced student performance on standardized math exams. Berends and Donaldson 
(2016) investigated ability groups by administering a survey to teachers in charter and non-charter 
schools in which teachers described their instructional practices. The majority of the schools 
included in their study were elementary and middle schools, and these authors did not investigate 
course-taking patterns in charter and non-charter secondary schools. Here we extend the research 
conducted by Berends and Donaldson (2016) by looking at how students enroll in different sets of 
courses within charter and non-charter public secondary schools in addition to how differences in 
course offerings by school sector mediate these student course-taking patterns. While Berends and 
Donaldson investigate the instructional differences between charter and non-charter schools, we 
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explore the programmatic differences in how STEM (science, technology, engineering, and 
mathematics) is organized in charter and non-charter schools. Specifically, we address the following: 

1. What are the programmatic differences between Texas charter and non-charter
public schools, specifically in STEM course offerings?

2. What are the differences in STEM course-taking patterns between students enrolled
in charter schools and students enrolled in non-charter public schools?

The focus upon STEM course-offerings and course-taking patterns in charter and non-charter 
public schools is motivated by the fact that the charter movement is positioned as a way to 
overcome inequity within an “inefficient” United States public education system  (Friedman, 2002; 
Goals, 2000, 1994; No Child Left Behind, 2002; Recovery Act, 2009). As displayed in  Figure 1, 
STEM disciplines are associated with higher earnings than non-STEM disciplines, a trend that holds 
for individuals with and without post-secondary degrees (Carnevale et al., 2015). Moreover, 
discrepant participation in STEM by ethnicity is evident as early as high school, particularly in the 
physical sciences (National Center for Education Statistics, 2019; Rothwell, 2013).  

Figure 1. Average earnings in 2016 dollars for bachelor’s degree holders by major. 
Note: Data obtained from the 2017 Digest of Educational Statistics Table 505.10 (National Center for Education 
Statistics, 2019). 
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Figure 2 shows the average number of high school credits students in the United States earn 
in Biology, Chemistry (Chem), Physics, and Mathematics by race for selected years between 1980 
and 2010. As can be seen, Asian and White students are more likely than students from other racial 
groups to take chemistry and physics. Given the economic advantages of pursuing STEM careers 
and the fact that charter schools are positioned as a means to promote social mobility, it is important 
to examine how charter schools either promote or constrain student access to STEM, as preparation 
in STEM disciplines is a plausible way for students to achieve social mobility. 

Figure 2. Average science and math credits (in Carnegie Units) for high school graduates from select 
years between 1980 and 2010. Data obtained from the 2017 Digest of Educational Statistics Table 225.10 
(National Center for Education Statistics, 2019) 

We analyze statewide student level educational data by constructing one-mode networks of 
STEM courses, schools, and students and employ community detection, the process of parsing 
nodes in a network into smaller groups based upon their similarity, within these networks to identify 
groups of nodes that are closely related to one another. Nodes in one-mode networks are all of the 
same type (e.g., all nodes represent students or schools) as opposed to bipartite networks, in which 
nodes represent two different units (e.g., some nodes represent students and others represent 
schools). Outcomes from one-mode network analysis and community detection are then used within 
hierarchical and multinomial logistic regression to address the research questions articulated above. 
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Given the size and diversity of the student population in Texas, Texas is an ideal setting in which to 
explore course-taking patterns in charter and non-charter schools. With a large and varied student 
population, findings from educational studies conducted in Texas can be generalized to and inform 
policy in other parts of the United States (the demographic characteristics of the students and 
schools included in this study are provided in  
Table 1). 

Social network analysis (SNA) is well-suited to explore school level course-offerings and 
student level course-taking patterns because SNA allows researchers to quantify and investigate the 
characteristics of agents within a network (such as students enrolled in the same courses within a  
school) based upon their mutual participation in or association with an organization and/or event 
(Borgatti & Ofem, 2010; González Canché & Rios-Aguilar, 2015). At the school level, the 
programmatic similarities between Texas charter and non-charter public schools can be investigated 
by looking specifically at how many STEM courses are mutually offered in a given set of schools. 
Similarly, at the student level, students’ mutual membership in STEM courses makes it possible to 
explore ability grouping in charter and non-charter schools with greater nuance than would be 
possible using only descriptive statistics. Whereas descriptive statistics show the numbers of students 
enrolled in various STEM courses in charter and non-charter schools, SNA allows us to identify 
which STEM courses are associated with one another based upon student enrollment. Through 
community detection, it is possible to identify course-taking patterns in the STEM disciplines by 
grouping students who mutually enroll in the same sets of STEM courses. 

Results from community detection are used as outcome variables in hierarchical linear models 
and multinomial logistic regression models to ascertain the degree to which STEM course-offerings 
and student course-taking patterns differ by sector. Statistical analyses are conducted at the school 
and student levels. At the school level, we find that STEM course-offerings at charter schools are 
more likely than those in non-charter schools to include either exit from the school system (i.e., 
dropping out) or transfer to and from that school. At the student level, we identify six STEM course-
taking patterns in Texas charter and non-charter schools through community detection. Relative to a 
“college preparatory” course set, characterized by a mix of core STEM courses and some advanced 
or elective STEM courses, students in charter schools are more likely to enroll in course sets that are 
either more advanced than the “college preparatory” set or more basic than the “college preparatory” 
set. In addition, students in charter schools are more likely than students in non-charter schools to 
enroll in course sets associated with either exit from the school system or transfer. 

The methods employed within this work in addition to our findings can enhance research 
into education policy networks. Au and Ferrare (2014) employed SNA to illustrate how wealthy 
individuals used philanthropic organizations to shift discourse about charter schools in Washington 
state and ultimately garner support for charter school legislation. Au and Ferrare (2014) express 
“serious concerns regarding the disproportionate power of super wealthy individuals and their 
related philanthropic organizations relative to public education policy and the democratic decision-
making process of individual voters” (p. 19). They draw upon Brandt’s (1998) conception of policy 
sponsorship, in which sponsors’ support is motivated by the prospect of gaining either material or 
ideological advantage. This work uses methods within SNA to characterize the academic 
programming in charter and non-charter schools in Texas and can be used in conjunction with 
policy network research to investigate the degree to which sponsors of charter schools use their 
influence to direct the curricula offered within charter schools. This application of our methods and 
results is discussed in greater detail in the concluding section. 
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Literature Review 

As Lubienski (2003) describes, critics of the public education system argue that public 
education is a monopoly that stifles the abilities of individual schools to innovate. Charter schools 
are offered as a means to circumvent this limitation. Proponents of charter schools contend that 
removing bureaucratic regulations afford charter schools greater autonomy with which to innovate 
and create novel instructional paradigms that will meet students’ needs with greater quality and 
efficiency (Berends et al., 2010; Bierlein & Mulholland, 1994; Friedman, 2002; Henig, 1995; 
Lubienski, 2003). In addition, charter school advocates argue that increasing choice in the 
educational marketplace allows families to enroll their students in schools that best serve their 
children’s needs and that market pressures will force schools that are unable to innovate or meet the 
needs of students to close. 

 Skeptics contend, however, that because public education is a public good it may not 
respond to market pressures in the way some economists suggest. Henig (1995) notes that education 
benefits the broader community by creating a better trained work force and a populace that is both 
prepared for civic engagement and able to lead fulfilling lives. These public benefits are not 
necessarily considered when families are left to invest in education as they see fit, and as a result, 
families may underinvest in their children’s education resulting in decreased efficiency in public 
education. In addition, Lubienski (2003) notes that research on charter schools indicates that the 
innovation expected due to market pressures is often limited to schools’ organizational structure, but 
is not evident in novel curricula or instruction. Lubienski (2003) argues that “curricular conformity 
and instructional standardization may in fact be caused by the very market mechanisms that were 
unleashed to address those ills” (p. 397). 

That charter schools revert to established curricular and instructional norms is predicted by 
institutional theory, in which an organization’s “legitimacy is derived from conformity to the 
normatively held rules and scripts of the institutional environment, rather than instructional 
effectiveness” (Huerta & Zuckerman, 2009, p. 414). According to institutional theory, competition 
and innovation introduced to the public education system through market pressures are not as 
powerful as charter school advocates suggest. The bureaucracy of the public education system has 
long established normative schooling, and schools, regardless of sector, adhere to practices that serve 
to legitimize these organizations as educational entities (Berends & Donaldson, 2016; Huerta & 
Zuckerman, 2009). While charter schools have greater autonomy with which they have the potential 
to innovate, established norms and state regulations within education may prove insurmountable. 
Thus, while it is important for research to investigate the effects of charter schools upon student 
outcomes, it is also important for charter school researchers to attend to the conditions within 
charter schools that may explain why they either are or are not improving student outcomes. 

Charter School Outcomes 

Extant literature investigating the impacts of charter schools upon student outcomes on 
standardized exams suggests that charter school impacts are contextual at best. In a multi-state 
study, Zimmer et al. (2012) found little or no difference in student outcomes by sector: charter 
schools in some states increased students’ test scores in math and reading, while charter schools in 
other states decreased students’ standardized test scores. Similarly, Gleason et al. (2010) and Clark et 
al. (2015) found no average differences in student achievement in math or reading between charter 
and non-charter public schools; however, differences in student achievement were identified when 
disaggregating schools by student populations. Specifically, Gleason et al. (2010) reported that 
charter schools serving low-income students yielded positive student outcomes in mathematics, 
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whereas charter schools serving high-income students yielded negative student outcomes in 
mathematics and reading. In their work, Clark et al. (2015) reported that charter schools in urban 
settings improved student mathematics scores while those in non-urban settings did not. 

Research into the effects of charter schools upon student outcomes is important, as this can 
help policymakers assess the degree to which charter schools have realized the educational 
improvements reformers predicted. However, given the contextual nature of sector differences in 
student achievement (Clark et al., 2015; Gleason et al., 2010; Tuttle et al., 2012; Zimmer et al., 2012), 
it is important for research to also examine the underlying mechanisms driving context-dependent 
sector differences in student outcomes. In this vein, Dobbie and Fryer (2016) examined a variety of 
outcomes—student test score gains, college enrollment, and early market labor outcomes—of charter 
school graduates. They found “no excuses” charter schools—schools with longer school days, 
rigorous test preparation, and high behavioral standards—increased student test score gains and 
college enrollment but had little noticeable impact upon graduates’ future earnings. Additional 
evidence for the importance of a charter school’s educational model on student achievement comes 
from Curto and Fryer (2014) who studied student math and reading achievement at SEED, a college-
preparatory boarding charter school in Washington, D.C. When comparing students randomly 
selected for attendance through lottery to students not selected for attendance, Curto and Fryer 
(2014) report students attending SEED increased both their mathematics and their reading scores. 

Although not specific to STEM disciplines, other lines of research have identified practices 
used by and employed within charter schools that may explain why some charter schools are more 
effective than others at promoting student outcomes on standardized exams. Some evidence 
suggests that charter schools may be engaging in “cream-skimming,” a practice in which schools 
target their recruiting efforts toward high-achieving students from low-income backgrounds (Jabbar, 
2015, 2016; Lacireno-Paquet et al., 2002). Of concern, cream-skimming serves to exacerbate 
inequities in access to education and also raises concerns regarding the true nature of charter school 
impacts on student outcomes. In addition to cream-skimming, some scholars argue that charter 
schools may achieve increases in student test scores by teaching to the test rather than implementing 
novel instructional practices (Finn et al., 2014; West et al., 2014). Yet another line of research has 
found evidence that “effective” charter schools are able to increase college enrollment through “new 
paternalistic” approaches to education in which low-income students of color are taught how to 
exhibit middle-class values through intensive character education that supplements academic 
programming (Curto & Fryer, 2014; McDermott & Nygreen, 2013). Similarly, Modica (2015) 
observed that instructional conditions in a diverse charter school pressured students of color to act 
“White” in order to be perceived as academically capable. 

Although research into the characteristics of (e.g., “no excuses” paradigms) and practices 
employed by (e.g., “skim-creamming” and “new-paternalism”) charter schools do not focus 
specifically on STEM disciplines, this research can help scholars and policymakers understand some 
of the general conditions in charter schools that may make some more effective at influencing 
student achievement than others. However, it is also important to explicitly look at the instructional 
conditions within charter schools that may explain context-dependent sector differences in student 
outcomes. Toward this end, Berends and Donaldson (2016) explore how differences in ability 
grouping between charter and non-charter public schools explain differences in student 
achievement. With respect to differences in ability grouping between charter and non-charter public 
schools, Berends and Donaldson (2016) find that students in charter schools are more likely than 
students in non-charter public schools to be in a high ability group and less likely to be in an average 
ability group. While there are differences between mathematics achievement gains between students 
in high and low ability groups, this relationship does not differ between charter and non-charter 
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public schools, suggesting that ability grouping practices between the two sectors are more alike than 
they are different, despite the different proportion of students enrolled in ability groups by sector 
(Berends & Donaldson, 2016). This leads to questions about the programmatic differences between 
charter and non-charter schools; while instructional norms may be more similar by sector than they 
are different, it is also important to investigate whether general academic programming differs by 
sector. We aim to expand upon research investigating the instructional conditions in charter and 
non-charter schools by identifying sector differences in academic course offerings.  

Tracking and Ability Grouping 

Although formal tracking programs in United States secondary schools were largely 
dismantled by the 1980’s, Lucas (1999) found evidence of more differentiated academic sorting at 
the secondary level. Rather than being organized into cohesive tracks (e.g., college-preparatory or 
vocational) in which students enroll in comparably rigorous courses across discipline, Lucas (1999) 
constructed statistical models that suggested students were more likely to enroll in discrepant 
courses across academic disciplines (e.g., college-preparatory mathematics and regular English). 
Despite the increased likelihood of students enrolling in discrepant courses across discipline, Lucas 
found patterns among the discrepant course enrollment, suggesting that tracking did not go away 
completely but instead became more nuanced and complex after formal programs diminished. 
Given such nuance in academic sorting, Berends and Donaldson (2016) differentiate between 
tracking—the practice of sorting students into entire course sequences based upon their perceived 
academic aptitudes or prior achievement—and ability grouping, which refers to the practice of 
enrolling “students into classes on a subject-by-subject basis” based on their perceived ability (p. 7). 
The explicit practice of tracking has diminished in the United States; however, the vertical sequence 
of courses at the high school level has allowed ability grouping to continue (Heck et al., 2004). 
Specifically, students who are deemed prepared may be able to enroll in more advanced coursework, 
while other students are forced to enroll in lower-level coursework. 

Heck et al. (2004) followed a cohort of 274 students throughout their high school careers 
and linked students to the courses they took each semester. In doing so, Heck et al. (2004) identified 
emergent course-taking patterns and found that enrollment in these pathways is both predicted by 
socioeconomic status and predictive of post-secondary plans. Specifically, advantaged students with 
high prior achievement are more likely to be enrolled in advanced course sequences, to have high 
college admissions exam scores, and to plan on attending colleges after graduating from high school. 

McFarland (2006) identified curricular pathways in two high schools and explored mobility 
between these academic tracks. Notably, McFarland (2006) reported that the types of curricular 
trajectories can vary widely between schools as a function of what course offerings are available at 
that school. Moreover, the structures of course sequences play an important role in determining 
whether or not students are able to move between and among different tracks within a school. For 
example, students in a school with increased differentiation in higher-level courses have greater 
opportunities to move to advanced tracks, whereas students in schools with limited higher-level 
courses must compete for spots in these courses. 

Differential enrollment in advanced courses in the public-school system can easily be seen 
using publicly available educational data. Plots generated using data from Texas show clear ethnic 
differences in the rates at which students are enrolled in advanced coursework, corroborating 
research that suggests advantaged students with high socioeconomic status are more likely to enroll 
in advanced coursework (Friedkin & Thomas, 1997; Heck et al., 2004).  

The plots in Figure 3 compare the percentages of ethnic minority students (Asian, Black, and 
Latinx, from top to bottom) to the percentage of White students enrolled in advanced courses  
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Figure 3. Percent difference in advanced course-taking between students from select ethnic groups 
and White students in charter and non-charter schools in Texas by the concentration of economic 
disadvantage in these schools. The left panel is colored by the percentage of ethnic minority students 
in each school, the right panel is colored by school sector, and bubbles are proportional to school 
size. 
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coursework as a reference, it is easier to see that Asian students are more likely than White students 
to enroll in advanced coursework a trend that does not vary by the concentration of economic 
disadvantage. Generally, lower percentages of Black and Latinx students enroll in advanced 
coursework than White students. In schools with higher concentrations economic disadvantage, 
however, the percentages of Black and Latinx students taking advanced coursework is greater than 
the percentage of White students taking advanced courses. Coloring these plots by sector (the right 
panel) provides insight into whether or not charter schools serve to disrupt such discrepant in each 
school, the right panel is colored by school sector, and bubbles are proportional to school size. 
participation in advanced STEM by ethnicity. By visual inspection, it appears there are minimal 
differences in advanced course-taking by sector, but further analysis is needed to explore this in 
greater depth.   

Data & Sample 

To explore course offerings and student course-taking patterns in Texas charter and non-
charter public schools, this study analyzes administrative educational data available through the 
Texas Education Research Center (ERC). The Texas ERC collects and maintains public education 
data dating back to 1993, including: teacher certification data from the State Board for Educator 
Certification (SBEC); K-12 student level demographic, enrollment, performance, and assessment 
data from the Texas Education Agency (TEA); campus and district level administrative data from 
the TEA; and post-secondary student level demographic, enrollment, and performance data from 
the Texas Higher Education Coordinating Board (THECB).  

In order to address our two research questions, we construct a cohort of students in Texas 
charter and non-charter public schools beginning in the ninth grade in the 2011-2012 school year, 
and we follow these students for four academic years through the 2014-2015 school year. Students 
are followed over four years because this is a typical timespan during which students complete high 
school. We use the following data elements available from the Texas ERC: student demographic 
data (e.g., race, gender, and designation as economically disadvantaged, limited English proficiency 
(LEP), special education (SPED), and gifted); student secondary coursework in STEM; school 
sector (charter or non-charter public school); and school level demographic data (which are obtained 
by aggregating student level demographic data at the campus level). To create a data set for this 
analysis, students are matched to STEM courses for each school in Texas by year. Our final data file 
includes a student identification, a school identification, a unique course identification by year (e.g., 
adv_physics_2012 to denote that a student took advanced physics during the 2011-2012 school 
year), and student demographic data. The average number of unique STEM course-year 
combinations in the set of schools included in our sample is 45.45 (with a standard deviation of 
20.03), and the number of unique STEM subjects offered in these schools over the four years of the 
study is 21.10 (with a standard deviation of 7.58). 

Only schools that are open during all four years for a given cohort are included in the data 
set. Including schools that are only open for a fraction of a cohort’s four years may serve to bias the 
results, as these schools do not offer four full years of STEM coursework to students. Moreover, 
schools classified as Disciplinary Alternative Education Programs (DAEP) or Juvenile Justice 
Alternative Education Programs (JJAEP), which serve students who have been removed from 
schools due to felonious activity, are not included in the present study. The course offerings in these 
schools are limited and the number of students completing four years in DAEP and JJAEP schools 
is minimal. In addition, the academic programs offered in these schools do not reflect sector 
differences but are instead established to meet the needs of students who have faced severe 
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disciplinary action within the public education system. These schools are characteristically not 
emblematic of school choice. Given these decisions, a total of 1630 charter and non-charter 
secondary schools are included in the present study. The average demographic characteristics of 
charter and non-charter schools included in this study are provided in Table 1. 

Table 1  
Average demographic characteristics of Texas charter and non-charter secondary schools 

Charter Non-charter 
# of Schools 178 1452 
Cohort Size 51 208 
% FRL 67.0 52.6 
% LEP 7.9 4.1 
% SPED 11.4 10.8 
% Gifted 3.1 9.2 
% Female 52.1 48.4 
% Asian 2.1 1.8 
% Black 15.5 10.3 
% Latinx 58.2 42.0 
% White 22.3 43.6 
% 8th Advanced Math 19.7 19.2 

In addition to removing schools that are not open for all four cohort years and 
DAEP/JJAEP schools, students who leave a school for reasons other than dropping out or 
transferring to another school are removed. Students who exit a school, but neither drop out of high 
school entirely nor transfer to another school, exit for reasons that do not necessarily reflect their 
academic trajectory (e.g., returning to a students’ home country, death, homeschooling, or moving 
out-of-state). Moreover, these exit reasons do not necessarily preclude students from continuing or 
discontinuing a certain curricular path (i.e., students’ out-of-state course-taking is unavailable in 
Texas ERC data).  

To track students who either drop out of the public-school system entirely or transfer to 
another school, dummy “course” variables are created in order to indicate the year and manner in 
which a student leaves a school (e.g., transfer_out_2012 indicates that a student transferred from a 
school in 2012). Student exit (either drop-out or transfer) in addition to student STEM course 
enrollment comprise a student’s secondary course memberships from which a network is created. 

In order to account for students enrolled in more than one campus in a given academic year 
or who transfer to another campus in a subsequent academic year, a student’s membership in the 
data set is weighted by 0.25 for each year in which that student is present. This weight is then 
divided by the number of schools attended by a given student in that year. Because students are 
followed across the four years after which they begin high school, these weights are used to compute 
cohort-level demographics in schools. A school cohort is defined as the total group of students who 
attended that school for either the entirety of their high school careers or a fraction thereof. In 
addition to using these weights to compute cohort demographics, student weights are used in 
student level statistical models. 
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Methods 

This study analyzes course-offerings and course-taking in Texas charter and non-charter 
school at three different levels. A state-wide analysis is first conducted to provide an overview of 
STEM course-taking in Texas in an effort to contextualize subsequent analyses. Then school level 
analyses are conducted in which STEM course-offerings in charter and non-charter schools are 
compared. Finally, student level analyses are conducted to characterize prominent STEM course-
taking patterns among students in Texas charter and non-charter secondary schools. In discussing 
these analytical methods and results, we use the term course offerings to refer to the sets of STEM 
courses common to various groups of schools, and the terms course-taking patterns or course sets to refer 
to the STEM courses common to various groups of students within schools. Herein, a community 
refers to a group within a network, and the type of network being analyzed determines whether or 
not the identified communities correspond to course offerings or course-taking patterns. 

Identifying Course-offerings and Course-taking 

Social network analysis is employed to identify courses associated with charter and non-
charter schools in Texas and to identify courses associated with groups of students in these schools. 
In contrast to inferential statistics, which focuses upon attributes of individuals within a group (e.g., 
race and gender) to explore trends between these attributes and an outcome of interest, social 
network analysis uses relationships between actors within a group to construct a network and 
explore how network characteristics explain the behavior of either the system or individuals and 
subgroups within the system (Borgatti & Ofem, 2010; Carolan, 2014). The network perspective 
reflects a shift to using relationships between actors to contextualize actors’ behaviors rather than 
quantifying the similarity between actors based on their communal attributes as is typical in 
traditional social sciences. Using networks to evaluate actors’ behaviors in relation to one another 
offers researchers a novel technique for understanding how school choice policy is experienced by 
students in schools. 

A sociogram is a visualization technique used to show how actors within a network are 
related to one another. Nodes (or vertices) within sociograms represent individual agents, and ties 
(or edges) between nodes indicate that a relationship exists between two actors. Edges can be either 
directed, indicating that one node interacts with another but not reciprocally (such as a student 
speaking to another student without that student responding) or undirected, indicating that the edge 
represents a mutual interaction, such as two students enrolled in the same class. In addition, edges 
can be weighted according to the strength of the interaction between two nodes (Barrat et al., 2004; 
Lancichinetti & Fortunato, 2009). The analysis of sociograms with community detection 
algorithms—discussed in detail later—is particularly apt for our research questions, as we are able to 
group students and schools according the number of STEM courses common to them and therefore 
analyze differences in course offering and course enrollment by school sector. 

To create a sociogram, an m by n matrix, A, is constructed in which matrix element Avw ∈ {0, 
1} indicates whether or not node v is associated with event w. In this work, v represents an individual
student or school and w indicates either that student v was enrolled in course w or that school v
offered course w. An example of such a matrix is given by Equation 1:

𝐀𝐀 = �
𝐴𝐴11 ⋯ 𝐴𝐴1𝑤𝑤
⋮ ⋱ ⋮
𝐴𝐴𝑣𝑣1 ⋯ 𝐴𝐴𝑣𝑣𝑤𝑤

� (1)
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Multiplying A by its transpose AT produces a weighted adjacency matrix in which each element gives 
the edge weight, or the strength of the connection, between two nodes. The weighted adjacency 
matrix then produces a one-mode network in which edges are weighted by the strength of the 
connection between two nodes (i.e., the number of STEM courses that either two students share or 
the number of STEM courses common between two schools). In our study, we construct three 
different levels of networks in this fashion. First, we construct networks in which nodes represent 
STEM courses and edges between them represent the number of schools offering both sets of 
courses. Next, we construct networks in which nodes represent Texas charter and non-charter 
schools with weighted edges representing the number of courses common to both schools. Finally, 
we construct student level networks for each campus, in which nodes represent students and edges 
between nodes are weighted by the number of courses in which both students enrolled. 

Communities within networks are defined as groups of nodes that are highly connected to 
other nodes within the community, but loosely connected to nodes outside of the community 
(Fortunato, 2010; Girvan & Newman, 2002; Reichardt & Bornholdt, 2006). Communities in 
network analysis are similar to cliques, in so far as they both identify groups of closely related nodes 
within a network; however, cliques are defined as maximally connected subsets of nodes within a 
network (Carolan, 2014), making cliques more restrictive than communities. Given the highly 
interconnected nature of the networks examined in our study (e.g., nearly all students take Biology 
during high school and all Texas high schools offer this course, as it is a graduation requirement), 
use of community detection algorithms makes more analytical sense.  

Community detection is operationalized in many algorithms by maximizing a network’s 
modularity (Blondel et al., 2008; Clauset et al., 2004; Fortunato, 2010; Girvan & Newman, 2002; 
Newman, 2004, 2006). In this work, a community represents a set of students or schools that are 
similar to one another given the number of courses they have in common. Modularity, given by 
Equation 2, compares the density of edges within and between communities in a network. 

𝑄𝑄 =
1

2𝑚𝑚��𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑘𝑘𝑣𝑣𝑘𝑘𝑤𝑤
2𝑚𝑚 �

𝑣𝑣𝑤𝑤

𝛿𝛿(𝑐𝑐𝑣𝑣 , 𝑐𝑐𝑤𝑤) (2) 

For weighted networks, Avw gives the edge weight between nodes v and w (as calculated by 
multiplying A, from Equation 1, by its transpose), kv is the sum of the weights of edges connected to 
node v, cv is the community to which node v belongs, 𝛿𝛿(𝑐𝑐𝑣𝑣 , 𝑐𝑐𝑤𝑤) equals 1 when cv = cw and 0 when cv ≠ 
cw, and 𝑚𝑚 = 1

2
∑ 𝐴𝐴𝑣𝑣𝑤𝑤𝑣𝑣𝑤𝑤 . Conceptually, modularity is the difference between the number of weighted 

edges within communities and the expected number of weighted edges within communities had the 
same number of edges been randomly distributed in the network. Therefore, a high, positive value 
of modularity indicates that a network has a strong underlying community structure. 

In this work, we employ the multi-level algorithm (Blondel et al., 2008) using the igraph 
package in R (Csardi, 2015). In this algorithm, nodes are initially placed into arbitrary communities 
and subsequently moved from their initial communities into adjacent communities. Since increased 
modularity in the network indicates stronger community structure, nodes are only moved into 
adjacent communities when the move serves to increase the modularity of the network. For each 
move, the resulting change in modularity is given by Equation 3: 

𝛥𝛥𝑄𝑄 = �
∑ (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 2𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖)

2𝑚𝑚 − �
∑ (𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 + 𝑘𝑘𝑖𝑖𝑡𝑡)

2𝑚𝑚 �
2

� − �
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2𝑚𝑚 − �
∑ 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖

2𝑚𝑚 �
2

− �
∑ 𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖

2𝑚𝑚 �
2

� (3)
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In Equation 3, wi are the weights of edges connected to a node i, ki gives the degree of node i, and 
these are summed over the total network (t) or community (in) to which a node belongs. If there is a 
positive change in modularity (e.g, Δ𝑄𝑄 > 0), the node is then moved into that community, and node 
weights are recalculated. This process is repeated until modularity is maximized (i.e., modularity 
cannot be increased any more). 

Yang et al. (2016) explore community detection algorithms for networks with various 
parameters. They report that the multilevel algorithm from Blondel et al. (2008) is effective for 
networks with between 0 and 6,000 nodes in addition to other network characteristics that typify the 
networks analyzed in this study. Given the versatility of the multilevel community detection 
algorithm and the characteristics of the networks explored in the present study, the multilevel 
algorithm is used in this analysis. 

Course-offerings and Course-taking in Charter and Non-charter Public Schools 

Our analysis begins by constructing state-wide networks of STEM courses in which we build 
two sociograms—one for charter schools and a second for non-charter public schools. The goal of 
this analysis is to get a general sense of whether or not curricular offerings in charter and non-
charter schools differ. In these networks, nodes represent STEM courses and edges connecting 
nodes represent the number of schools (either charter or non-charter) in which both courses are 
offered. Networks (for all analyses) are plotted using the Fruchterman-Reingold algorithm, a force-
directed graphing technique in which nodes are given an electrostatic charge such that all nodes 
experience repulsive forces between one another and edges between nodes act as springs that exert 
an attractive force between pairs of nodes (1990). Communities in these sociograms identify groups 
of STEM courses that are closely related to one another based upon the number of schools in which 
each pair of courses are mutually offered. Course identifiers used in the present study include the 
year in which a given STEM course was offered, so the statewide analysis provides an overview of 
the sequence and content of courses that are associated with one another in Texas by school sector. 
From the analysis of the networks displayed in these sociograms, it is possible to characterize 
curricular offerings in charter and non-charter schools at a general level. For example, if more 
communities are identified in the STEM course network using charter schools as edges than when 
using non-charter schools as edges, this may suggest that curricular offerings in charter schools cater 
to niche interests, consistent with what market theory predicts. 

At the school level, sociograms are constructed in which nodes represent Texas public 
schools (both charter and non-charter) and edges between nodes are weighted by the number of 
STEM courses mutually offered between those schools. The multilevel algorithm is used to identify 
communities within this network. Communities in this network signify that schools are similar to 
one another based upon the number of STEM courses they mutually offer, and we describe 
communities identified in the school level network analysis as the STEM course offerings in Texas 
public schools. We analyze the STEM courses most commonly offered in each community to 
characterize STEM course offerings. The goal of the school level analysis is to investigate whether or 
not curricular offerings in STEM disciplines differ by sector. Therefore, the results from the school 
level network analysis are used as outcome variables in a multinomial logistic regression model 
(Equation 4). This model predicts the odds of a school having a set of STEM courses 𝛼𝛼 relative to a 
reference set of courses as a function of school level predictor variables: 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝜃𝜃𝑖𝑖𝛼𝛼

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
� = 𝛽𝛽𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑖𝑖 + �𝛽𝛽𝑋𝑋𝑋𝑋𝑖𝑖

𝑖𝑖

(4)
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Here, 𝜃𝜃𝑖𝑖
𝛼𝛼

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
 gives the odds ratio of campus i offering STEM courses 𝛼𝛼 relative to a reference set of 

courses, Ci indicates whether or not a school is a charter school, Si gives a school’s size as 
determined by its cohort population, Mi gives the proportion of students at school i who enrolled in 
a high-school level math course (at least algebra 1) in 8th grade, and Xi are school level demographic 
variables for the percentages of students labelled as economically disadvantaged, special education 
(SPED), underrepresented minority, gifted, and limited English proficient (LEP). These labels are 
consistent with the language used by the Texas Education Agency. The variable of interest in the 
model specified by Equation 4 is 𝛽𝛽𝐶𝐶 , which quantifies how school sector is related to the odds of 
that school offering STEM courses 𝛼𝛼 relative to the reference category. 

At the student level, a network is constructed in which each node represents an individual 
student and edges between students are weighted by the number of STEM courses common to each 
pair of students. These networks are constructed independently for each school included in the 
present study. For each school network, the multilevel community detection algorithm is used to 
identify communities of students associated by their mutual enrollment in STEM coursework. The 
communities at the student level are used to identify and characterize prominent STEM course-taking 
patterns or course sets, as students are grouped by their mutual enrollment in STEM coursework. The 
average number of communities identified in Texas charter and non-charter secondary schools is 
about 3.4. Given that this study includes a total of 1630 schools, categorizing the communities of 
students based upon their shared courses requires analyzing course-taking in over 4,800 
communities. k-means clustering is a method of partitioning data into groups in which the data 
points in each group have similar means across a vector of attributes (Guthrie, 2018; MacQueen, 
1967). The k-means clustering algorithm takes a set of N data points, each with a vector of attributes 

xı
(ȷ)������⃑ , and partitions these data points into k groups: S = (S1, S2, …, Sk). Each group Si is constructed

such that the within-group sum of squares is minimized, as given by Equation 5: 

𝑆𝑆𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑗𝑗

���𝑥𝑥𝚤𝚤
(𝚥𝚥)�������⃗ − 𝑐𝑐𝚥𝚥��⃗ �

2𝑖𝑖

𝑖𝑖=1

𝑘𝑘

𝑗𝑗=1

(5) 

In the present study, k is set to 6, thus identifying six distinct course-taking patterns in Texas charter 
and non-charter schools. To find an appropriate value for k, we plotted the within group sum of 
squares for varying values of k (a Scree plot) and identified the value at which the plot begins to 
flatten, indicating that additional values of k no longer reduce the within group sum of squares to an 
appreciable degree. 

The course-taking patterns identified within student level networks are used as the outcome 
variables in two school level models and one student level model. The first school level model, given 
by Equation 6, seeks to determine whether the number of course-taking pathways in Texas public 
schools differs between charter and non-charter schools: 

𝑃𝑃𝑖𝑖 = 𝛽𝛽𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑖𝑖 + 𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷𝑗𝑗[𝑖𝑖] + �𝛽𝛽𝑋𝑋𝑋𝑋𝑖𝑖
𝑖𝑖

(6) 

In Equation 6, Pi gives the number of pathways identified within school i, and the predictor 
variables are the same as those used in Equation 4, except that a random effects variable for district j 
to which school i belongs is also included. 
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The second school level model is a multinomial logistic regression model similar to the 
model specified by Equation 4; however, this model also controls for the number of pathways Pi 
identified in school i: 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝜃𝜃𝑖𝑖𝛼𝛼

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
� = 𝛽𝛽𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑖𝑖 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑖𝑖 + �𝛽𝛽𝑋𝑋𝑋𝑋𝑖𝑖

𝑖𝑖

(7) 

At the student level, the probability of a student belonging to a community characterized by one of 
the six course-taking patterns identified through k-means clustering is assessed through the 
multilevel logistic regression model specified by Equation 8: 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝜃𝜃𝑖𝑖𝛼𝛼

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
� = 𝛽𝛽𝑐𝑐𝐶𝐶𝑖𝑖 + 𝛽𝛽𝑀𝑀𝑀𝑀𝑖𝑖 + 𝑆𝑆𝑐𝑐ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗[𝑖𝑖] + �𝛽𝛽𝑋𝑋𝑋𝑋𝑖𝑖

𝑋𝑋

(8) 

In Equation 8, 𝜃𝜃𝑖𝑖𝛼𝛼 represents the odds that student i enrolls in course-sequence α, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  represents 
the odds of enrolling in a reference course-sequence, Ci denotes whether or not student i attends a 
charter school, Mi is a flag indicating whether or not a student i took an advanced math course in 
middle school, and Xi are student level demographic variables for gender, ethnicity and designation 
as SPED, LEP, economically disadvantaged, and gifted. In addition to these fixed effects, random 
effects coefficients for school j in which student i is enrolled are included in order to account for the 
fact that students in a school are not independent of one another. The outcome variable is the log 
odds ratio giving the likelihood of a student enrolling in a given course-sequence within a school as 
compared to a reference course-sequence. 

Mixed-effects multinomial logistic regression models cannot be run in R; however, individual 
mixed-effects logistic regression models can be run using the package lme4. Begg and Gray (1984) 
show that it is possible to estimate a mixed effects multinomial regression model by running 
individual mixed-effects logistic regression models comparing each category of the outcome 
variable. This approximation is more conservative than a single multinomial regression model and 
works best when the reference category is the most common category of the outcome variable. 
Therefore, this work employs the Begg and Gray (1984) approximation and specifies individual 
logistic regression models comparing each category of our outcome variable, the course-taking 
communities identified in the student level network. An overview of the analytic methods employed 
in this work is provided in Table 2. 

Table 2  
Overview of the methods employed to analyze STEM course-offerings and course-taking patterns in 
Texas charter and non-charter public schools 
Analytic Level Social Network Community 

Interpretation 
Statistical Analysis 

State-wide Nodes: STEM Courses 
Edges: Schools 

Sector-level STEM 
course differences None 

School Nodes: Schools 
Edges: STEM Courses 

School-level course 
offerings 

Multinomial Logistic 
Regression & HLM 

Student Nodes: Students 
Edges: STEM Courses 

Student-level course-
taking patterns 

Multinomial Logistic 
Regression 



Education Policy Analysis Archives  Vol. 28 No. 123  SPECIAL ISSUE  18 

Results 

The results of this study are organized by the analytic levels described in Methods. First, 
statewide analysis is presented, followed by results from school and student level analyses. 

Texas Statewide STEM Course-Taking 

Two sets of sociograms (one for charter schools and the other for non-charter public 
schools) displaying STEM courses connected by the number of Texas schools offering each pair of 
courses are generated. Nodes in these sociograms represent individual STEM courses and edges 
connecting nodes are weighted by the number of schools (either charter or non-charter public 
schools) in which both courses are offered. The sociograms in Figure 4 and Figure 6 are colored by 
course category (advanced or regular mathematics and science courses or dummy “courses” 
indicating exit/transfer) for charter and non-charter schools, respectively. The sociograms in Figure 
5 and Figure 7 are colored by the communities identified by the multilevel algorithm in charter and 
non-charter schools, respectively.  

Four communities were detected in the network using charter schools to connect STEM 
courses and three communities were detected in the network using non-charter schools to connect 
STEM courses. As described in the methods section, the communities in these networks describe 
the sequence and content of STEM courses associated with one another in Texas charter and non-
charter public schools. In both sets of sociograms, nodes that are located in the central, more 
densely concentrated region are STEM courses that are offered in more schools than the nodes 
located at the periphery of the sociograms. In this analysis, the STEM courses located on the 
periphery of the sociograms differentiate the course offerings in charter and non-charter public 
schools. As such, by analyzing the sets of courses identified through community detection, it is 
possible to define the types of STEM courses available to students in different charter and non-
charter schools. 
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Figure 4. Sociogram depicting STEM courses connected by Texas charter schools. Color represents 
course type. 

Figure 5. Sociogram depicting STEM courses connected by Texas charter schools. Color represents 
community identified through the multilevel algorithm. 
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Figure 6. Sociogram depicting STEM courses connected by Texas non-charter public schools. Color 
represents course type. 

Figure 7. Sociogram depicting STEM courses connected by Texas non-charter public schools. Color 
represents community identified through the multilevel algorithm.  
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The four sets of courses in the charter school network can be characterized as advanced, 
college preparatory, basic, and remedial. The college preparatory set of STEM courses include 
“staple” courses (e.g., algebra 1, algebra 2, biology, chemistry, etc.) that students take early on during 
the four-year high school period with AP and IB courses that students take during their final two 
years. The advanced set of STEM courses is an accelerated version of the college preparatory set. In 
the advanced set of courses, students are more likely to take AP and IB STEM courses at an earlier 
stage in their high-school careers. The basic set also includes the “staple” STEM courses; however, 
after taking the STEM staples, students enroll in non-AP elective courses, such as aquatic science, in 
their final high school years. Finally, the remedial set consists of STEM courses geared toward  
students identified as SPED in addition to core courses offered during the latter half of students’ 
high school careers. 

The sets of STEM courses identified in the non-charter public school network are 
characterized as advanced college preparatory, basic, and remedial. The basic and remedial sets of 
STEM courses in the non-charter public school network are similar to the sets identified in the 
charter school network, and the advanced college preparatory is a hybrid of the advanced and 
college preparatory sets of courses identified in the charter school network. In the advanced college 
preparatory hybrid set of STEM courses, students enroll in both cores and advanced (AP and IB) 
STEM courses at various points throughout the course of their four years of high school.  

Although the findings of the statewide analysis do not conclusively point to differences in 
the academic programming between charter and non-charter schools in Texas, that four sets of 
STEM courses are found in the charter school network as opposed to the three found in the non-
charter public school network is suggestive of some general sector differences. Charter schools may 
be organized such that their curricular offerings cater to niche interests to a greater degree than non-
charter public schools. There is a distinction in the charter network between advanced and college 
preparatory STEM course offerings, while these two sets of STEM courses exist as a hybrid in non-
charter schools. Hence, students may have more choice in the charter sector when selecting between 
schools; however, students enrolled in non-charter public schools may have access to more diverse 
curricular offerings. 

STEM Course-offerings in Charter and Non-charter Public Schools 

In our next analysis, we do not construct sociograms for charter and non-charter separately, 
but instead construct a sociograms in which nodes represent Texas public schools and edges are 
weighted by the number of STEM courses shared between pairs of schools. Communities in this 
analysis consist of schools that are closely associated with one another due to the number of STEM 
courses common to that subset of schools. Sociograms of this network are provided in Figure 8 and 
Figure 9. The nodes in Figure 8 are colored by school sector, and the nodes in Figure 9 are colored 
by the communities detected through the multilevel community detection algorithm. These 
networks are densely connected because some STEM courses are offered in all public schools. 
Inspection of Figure 9 shows that community structure seems to be related to schools’ radial 
distance from the center of the sociogram. 
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Figure 8. School level sociogram in which edges are weighted by the number of courses shared by 
pairs of schools. The sociogram is colored by school sector. 

Figure 9. School level sociogram in which edges are weighted by the number of courses shared by 
pairs of schools. The sociogram is colored by community. 
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At the school level, three sets of schools, each with different STEM characteristic course-
offerings, are found through the multi-level community detection algorithm: schools with 
comprehensive STEM courses; core STEM offerings; and STEM offerings tailored for students labeled 
as SPED.  There are 641 schools that offer a comprehensive set of STEM courses, 879 schools that 
offer core STEM coursework, and 110 schools that offer a SPED-tailored STEM curriculum. The 
specific courses associated with each set are provided in Table 3 along with the percentage of 
schools within each respective community offering those courses. 

Table 3  
STEM courses in Texas public schools by community (as identified in the school-level network) and 
percentage of schools in each community offering those courses 
% Schools Comprehensive Core SPED 

641 Schools 879 Schools 110 Schools 

75-100

Algebra 1 (SPED) 
Algebra 1 
Algebra 2 
AP Biology 
AP Calculus AB 
AP Chemistry 
Biology (SPED) 
Biology 
Chemistry 
Geometry (SPED) 
Geometry 
Integrated Phys/Chem 
Mathematical Models 
Physics 
Precalculus 
Dropout 
Transfer In 
Transfer Out 

Algebra 1 
Algebra 2 
Biology 
Chemistry 
Geometry 
Integrated Phys/Chem 
Mathematical Models 
Physics 
Precalculus 
Transfer In 
Transfer Out 

Algebra 1 (SPED) 
Algebra 1 
Algebra 2 (SPED) 
Biology (SPED) 
Biology 
Chemistry 
Geometry (SPED) 
Geometry 
Integrated Phys/Chem 
Mathematical Models 
Physics 
Precalculus 
Transfer In 
Transfer Out 

50-75

Advanced Quant 
Reasoning 
AP Calculus BC 
AP Environmental 
Science 
AP Physics 1 
AP Statistics 
Environmental Science 
Independent Study, Math 

Algebra 1 (SPED) 
Dropout 
Geometry (SPED) 

Dropout 
Environmental Systems 
Independent Study, Math 

25-50

Algebra 2 (SPED) 
AP Physics B 
AP Physics C 
Aquatic Science 
Astronomy 
Chemistry (SPED) 
Earth & Space Science 

AP Calculus AB 
Biology (SPED) 
Environmental Systems 
Independent Study, Math 

AP Calculus AB 
Earth & Space Science 

Coefficients from the multinomial logistic regression model specified in Equation 4 are 
given in Table 4. For this model, the probability of a school offering a comprehensive set of courses 
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serves as the reference category to which the probabilities of a school offering either a core or 
SPED-tailored STEM coursework are compared. Exponentiating the coefficients in Table 4 
indicates how much a predictor variable increases or decreases the odds of a school offering a set of 
STEM courses (in our case, core or SPED-tailored) relative to the reference (comprehensive course 
offerings). 

With the exception of school size, which is in units of individual students, predictor variables 
in Table 4 represent the proportion of students classified as belonging to a given demographic 
category at each school. Controlling for school level demographics and school size, a charter school 
is no more or less likely than a non-charter public school to only offer core STEM courses relative 
to a comprehensive set of courses. Charter schools are, however, 93% less likely to offer SPED-
tailored STEM coursework relative to comprehensive coursework. In addition, schools with greater 
student populations and greater percentages of students who enrolled in a high-school level math 
course in eighth grade are less likely to offer only core and SPED-tailored STEM courses relative to 
comprehensive courses.  

Table 4  
Results for a multinomial regression model (Equation 4) comparing the odds of a school offering 
core or SPED courses relative to a comprehensive set of STEM courses 

Model Core to Comp. SPED to Comp. 
Est. SE Sig. Est. SE Sig. 

Charter 0.44 0.36 -2.70 1.11 * 
Econ. Dis. 1.32 0.79 . 1.13 0.96 
SPED -5.12 0.86 *** -1.39 0.90 
Gifted -0.77 1.11 -1.52 1.81 
LEP 0.79 1.93 -3.98 3.17 
MS Math -2.27 0.60 *** -3.40 0.99 *** 
Asian 1.01 2.07 9.88 2.20 *** 
Black 4.46 0.92 *** 4.45 1.05 *** 
Latinx 5.28 0.78 *** 5.15 0.81 *** 
Multi-racial 9.49 2.03 *** 13.13 1.73 *** 
Nat. Am. 0.53 2.80 3.83 2.40 
Pac. Is. -28.85 0.05 *** -48.12 0.02 *** 
White 6.66 0.77 *** 7.02 0.76 *** 
School Size -0.03 0.002 *** -0.01 0.001 *** 
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 

Coefficients from the regression model predicting the number of course-taking pathways 
associated with school level predictors and charter school status (Equation 6) are provided in Table 
5. Two variants of this model were run—one including random effects coefficients for district and
another without. The statistical significance of the predictor variables is the same for both models as
are the directions of the effects. The estimates from the model including district-level random are
slightly smaller, so we report these more conservative estimates in Table 5. The scales of the
predictor variables in this model are the same as the scale of the predictor variables in the
multinomial model just discussed. In the model specified by Equation 6, there is no statistically
significant effect of school sector on the number of course pathways identified in Texas public
schools. Increasing school size and the percentages of Asian, Black, Latinx, Multi-racial, Native
American, and White students in a school are associated with statistically significant increases in the
number of course pathways identified in that school. The percentage of students identifying as
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Pacific Islander is not statistically significant; however, this is likely due to the fact that there are very 
few students identifying as Pacific Islander in the present study. That increasing the percentages of 
all racial groups in a school yields an increase in the number of course-taking pathways in that 
school is somewhat counterintuitive; however, a students’ membership in a given racial group is 
mutually exclusive with his or her membership in another racial group. Thus, for example, a school 
with a student population identifying exclusively as Asian is estimated to have 2.89 STEM course-
taking patterns, whereas a school serving students identifying exclusively as Black is estimated to 
offer 3.92 distinct STEM course-taking patterns. The estimated number of STEM course-taking 
patterns for schools with diverse student populations can be computed by multiplying the 
coefficient for each racial group by the proportion of the student body that identifies as members of 
that group and summing across all groups. A final note of interest, increases in the percentages of 
gifted students and students who enrolled in a high school math course during eighth grade are 
associated with decreases in the number of course pathways identified in a given school. 

Table 5 
Regression coefficients predicting the associated change in the number of course-patterns identified 
in schools due to school level demographic characteristics (Equation 6) 

Est. SE Sig. 
Charter -0.10 0.07 
Econ. Dis. 0.10 0.15 
SPED -0.04 0.21 
Gifted -1.14 0.29 *** 
LEP 0.69 0.35 
MS Math -0.42 0.15 ** 
Asian 2.89 0.50 *** 
Black 3.92 0.20 *** 
Latinx 3.30 0.15 *** 
Mutli-racial 3.09 0.98 ** 
Nat. Am. 7.00 1.69 *** 
Pac. Is. 7.11 4.38 
White 3.07 0.08 *** 
School Size 0.001 0.0001 *** 
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.10 

Student STEM Course-taking in Charter and Non-charter Public Schools 

In order to categorize the 4800 communities identified within the student level network, k-
means clustering (Equation 5) partitioned these communities into clusters based upon community 
level attributes. These attributes are: students’ average STEM, AP and IB, SPED, “staple,” non-
AP/IB advanced, and total STEM course enrollment; the average percentage of students with 
STEM credits to graduate under a “distinguished academic program” and under a “foundational” 
program; and the average percentage of students who dropped out, transferred into a school, 
transferred out of a school, and enrolled in at least one AP or IB STEM course, advanced STEM 
course, and SPED STEM course. Six distinct course-patterns were identified:  an advanced set (Adv); 
a basic set (Basic); a college preparatory set (Cprep); a transitional set (Trans); a SPED set (SPED); and an 
exit set (Exit). The average values of the attributes used to identify clusters of communities using the 
k-means algorithm are given in Table 6.
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In the advanced set, students take the highest number of STEM courses (7.6) with 90.3% of 
students also taking at least one advanced course and 68.6% of students enrolling in at least one 
AP/IB STEM course. Students grouped in the basic STEM course set take an average of 5.4 STEM 
courses, with 22.2% of students enrolling in at least one advanced course and 4.4% enrolling in at 
least one AP/IB course. In the college preparatory set, students take an average of 6.8 STEM courses 
with 62.6% of these students taking at least one advanced course and 13.9% of these students taking 
at least one AP/IB course. The college preparatory set is more rigorous than the basic set and less 
rigorous than the advanced set. The transition set is characterized by a high percentage of students 
either transitioning into (42.9%) or out of (51.4%) a school. In this course pattern, 7.6% of students 
drop out of school. The exit set differs from the transition set in that students take fewer STEM 
courses on average (2.0 as opposed to 3.8), and a higher percentage of students in the exit set drop 
out (10.6%). Finally, students in the SPED set take an average of 4.4 STEM courses, and 96.6% of 
these students enroll in at least one STEM course geared specifically for SPED students. 

Table 6  
Average number of courses and average percentage of student enrollment in STEM courses by type 
and by cluster identified using the k-means algorithm 

Adv Basic CPrep Trans SPED Exit 

N
um

be
r o

f C
ou

rs
es

 

STEM 7.6 5.4 6.8 3.8 4.4 2.0 
Science 3.8 2.5 3.5 1.4 2.4 0.7 
Math 3.7 2.3 3.1 1.4 1.8 0.5 
AP/IB 1.4 0.1 0.2 <0.1 <0.1 <0.1 
Advanced 2.3 0.3 0.9 0.1 <0.1 <0.1 
Core 5.6 3.9 5.7 2.3 0.3 0.5 
SPED 0.2 0.2 0.1 0.2 3.6 0.4 

Pe
rc

en
t o

f S
tu

de
nt

s 
E

nr
ol

lin
g 

DAP 48.8 9.6 29.5 <0.1 1.4 <0.1 
Foundations 15.5 13.2 15.7 <0.1 5.8 <0.1 
Drop Out 0.4 4.3 1.5 7.6 3.7 10.6 
Transfer In 9.1 30.9 14.5 42.9 10.2 52.3 
Transfer Out 8.1 28.9 10.1 51.4 11.2 14.2 
AP/IB 68.6 4.4 13.9 0.6 0.1 1.4 
Advanced 90.3 22.2 62.6 6.0 2.6 6.2 
SPED 1.3 8.5 2.6 8.0 96.6 22.2 

Definitions: AP/IB – Advanced Placement/International Baccalaureate courses; DAP – Qualified for 
Distinguished Achievement Program; Foundation – Foundation High School Program SPED – Special 
Education; STEM – Courses in science, technology, engineering, and mathematics 

Table 7 gives the average percentage of students in charter (C) and non-charter (NC) public 
schools in Texas enrolled in each type of course-taking pattern identified through the k-means 
clustering by demographic category. Statistically significant differences between sector at the p< 0.05 
level as determined by t-tests are highlighted in gray. For example, of the students enrolled in 
advanced course-taking patterns in charter schools, 70.3% are identified as economically 
disadvantaged, as opposed to 31.7% of the students enrolled in advanced course-taking patterns in 
non-charter schools. This table provides an overview of how course-taking patterns differ between 
sector for student demographic groups.  

The clusters identified through the k-means algorithm are used as the outcome variable in a 
school level multinomial logistic regression model (Equation 7) and a series of student level 
hierarchical logistic regression models (Equation 8). The cluster with the largest number of students 



How do students experience choice? 27 

is the college preparatory group and is therefore set as the reference category in both models. 
Average demographic characteristics of students in each of identified clusters of communities for 
charter, non-charter, and all Texas public schools are provided in Table 7. The coefficients from the 
school level multinomial logistic regression model are provided in Table 8, and the coefficients from 
the 15 student level hierarchical logistic regression models are provided in Table 9. 

Table 7  
Average demographic characteristics of students associated with clusters of communities identified 
through k-means clustering in charter (C) and non-charter (NC) public schools. Statistically 
significant sector differences at the p < 0.05 level determined through t-tests are highlighted in gray 

Adv CPrep Basic Trans SPED Exit 
NC C NC C NC C NC C NC C NC C 

Econ. 
Dis. 31.7 5.8 54.8 70.4 60.1 69.1 70.0 62.8 73.1 81.2 64.5 59.0 

LEP 1.3 2.6 5.7 6.8 7.7 10.9 10.3 8.6 7.9 7.6 4.7 6.3 
SPED 0.9 10.5 5.2 5.9 15.7 9.9 18.9 11.5 91.3 93.1 21.1 12.6 
Gifted 28.5 55.5 7.2 6.3 3.9 2.0 3.2 1.2 0.5 0.0 1.7 0.9 
Fem. 51.4 8.2 50.3 52.8 46.1 52.9 46.2 50.5 37.4 39.1 45.2 43.8 
Asian 10.5 0.1 2.3 2.7 2.3 1.3 1.5 1.3 1.0 4.3 0.9 0.8 
Nat. 
Am. 0.4 9.2 0.4 0.3 0.5 0.6 0.5 0.4 0.5 0.0 0.5 0.7 

Black 8.0 0.0 12.5 13.6 17.0 17.9 19.4 18.4 19.4 8.7 17.0 16.2 
Pac. Isl. 0.2 73.7 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.0 0.3 0.4 
Latinx 35.6 0.6 52.0 69.7 47.7 60.4 53.8 50.3 52.5 56.5 48.3 47.3 
Multi-
racial 2.4 8.1 1.5 0.8 1.8 1.1 1.4 1.9 1.2 0.0 2.1 1.5 

White 42.9 5.8 31.1 12.9 30.5 18.7 23.3 27.5 25.3 30.4 30.8 33.2 

Table 8 
Coefficients predicting the associated change in the log-odds of a school offering advanced (Adv.), 
basic, transitional (Trans.), SPED, or Exit course-sets relative to a college preparatory course set 
(Equation 7) 

Adv. Basic Trans. SPED Exit 
Est (SE) Sig Est (SE) Sig Est (SE) Sig Est (SE) Sig Est (SE) Sig 

Charter  0.64 (0.21) **  0.71 (0.15) *** 1.20 (0.14) *** -0.76 (0.41) .  0.98 (0.17) *** 
Econ. 
Dis. 

-1.31 (0.37) *** -0.07 (0.26) -0.10 (0.26) 0.80 (0.35) * -0.04 (0.34)

SPED -4.20 (0.12) ***  1.41 (0.40) *** 3.40 (0.28) *** 7.49 (0.33) *** 3.62 (0.34) ***
Gifted 1.29 (0.53) * -2.22 (0.59) *** -1.64 (0.63) ** 0.03 (0.20) -5.71 (0.17) ***
LEP 1.66 (0.57) **  1.57 (0.50) **  1.86 (0.43) *** -0.80 (0.12) *** 1.62 (0.56) ***
MSMath  2.02 (0.32) *** -0.53 (0.27) . -1.63 (0.30) ***  1.65 (0.45) *** -2.20 (0.46) ***
Asian  1.31 (0.64) *  1.60 (0.63) * 1.61 (0.69) * -2.82 (0.15) ***  1.23 (0.17) *** 
Black -0.56 (0.49)  0.27 (0.37)  -0.81 (0.35) * -7.36 (0.40) *** -3.97 (0.46) ***
Latinx -1.17 (0.39) ** -0.55 (0.28) . -1.69 (0.28) *** -7.17 (0.32) *** -4.42 (0.37) ***
Mutli 3.42 (0.03) *** 0.90 (0.03) ***  1.68 (0.03) *** -3.40 (0.01) ***  2.64 (0.01) *** 
Nat. Am.  3.12 (0.01) *** -0.69 (0.01) *** -1.42 (0.01) *** -0.44 (0.01) *** -6.42 (0.01) ***
Pac. Is.  1.24 (0.01) ***  2.00 (0.01) ***  7.69 (0.01) *** -10.2 (0.01) ***  3.54 (0.01) *** 
White -2.34 (0.26) *** -0.07 (0.20) -1.97 (0.21) *** -6.66 (0.29) *** -3.92 (0.28) ***
Schl. Size .0007 (.0002) ** -.0003 (.0002) -.002 (.0003) *** .0005 (.0003) -.002 (.0003) *** 
Comm  0.05 (0.06) -0.05 (0.05)  0.36 (0.05) ***  0.84 (0.07) ***  0.85 (0.06) *** 
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 



Table 9  
Coefficients for student level hierarchical logistic regression models specified by Equation 8 
Log-Odds Adv. to CPrep Basic to CPrep Exit to CPrep Trans. to CPrep SPED to CPrep 

Est. SE Sig. Est. SE Sig. Est. SE Sig. Est. SE Sig. Est. SE Sig. 
Intercept -12.1 0.45 *** -3.3 0.2 *** -8.64 0.63 *** -4.67 0.25 *** -13.8 0.86 ***
Charter 3.41 0.94 *** 2.8 0.5 *** 4.9 0.78 *** 6.01 0.41 *** -0.25 0.81
Econ. Dis. -0.57 0.04 *** 0.51 0.02 *** 0.33 0.18 . 0.61 0.05 *** 0.43 0.15 ** 
Gifted 1.13 0.04 *** -0.47 0.04 *** -2.49 0.67 *** -0.88 0.12 *** -1.59 1.26
LEP -0.75 0.08 *** 0.71 0.03 *** -0.55 0.43 0.52 0.05 *** -0.02 0.2
SPED -0.74 0.09 *** 2.14 0.03 *** 2.85 0.17 *** 2.27 0.03 *** 8.74 0.38 *** 
Female 0.08 0.03 *** -0.25 0.01 *** -0.23 0.15 -0.27 0.03 *** 0.16 0.1 . 
MS Math 5.71 0.03 *** -0.94 0.03 *** -1.5 0.35 *** -1.3 0.1 *** -11.1 4.99 *
Asian 1.5 0.21 *** -0.75 0.13 *** -3.41 0.8 *** -0.91 0.26 *** -3.66 1.05 ***
Black -0.27 0.21 0.14 0.12 -2.9 0.55 *** -0.25 0.21 -1.62 0.66 *
Pac. Isl. 0.49 0.38 -0.91 0.29 ** -5.77 1.84 ** -0.4 0.47 -0.84 3.49
Latinx -0.19 0.21 0.09 0.12 -2.8 0.53 *** -0.45 0.21 * -1.72 0.65 **
Multi-racial 0.29 0.23 -0.11 0.13 -2.58 0.75 *** -0.37 0.25 -1.48 0.76 .
White 0.08 0.21 -0.13 0.12 -2.28 0.52 *** -0.44 0.21 * -1.77 0.65 **
Log-Odds Adv. to Basic Exit to Basic Trans. to Basic SPED to Basic Adv. to Trans. 
Intercept -11.4 0.57 *** -8.24 1.45 *** -2.82 0.54 *** -16.9 1.11 *** -3.72 1.01 ***
Charter -1.46 1.65 3.79 0.61 *** 8.21 1.03 *** 1.14 0.73 -5.33 0.75 ***
Econ. Dis. -1.19 0.06 *** 0.03 0.29 0.33 0.08 *** -0.16 0.19 -1.19 0.1 *** 
Gifted 1.66 0.09 *** 0.19 0.72 -0.71 0.19 *** -12.7 8.5 1.62 0.17 *** 
LEP -1.22 0.11 *** -0.72 0.56 -0.04 0.11 -0.39 0.31 -1.04 0.14 ***
SPED -1.87 0.1 *** 0.87 0.25 *** 0.94 0.07 *** 7.42 0.43 *** -2.61 0.13 ***
Female 0.28 0.04 *** 0.1 0.21 -0.12 0.06 * -0.12 0.14 0.09 0.07 
MS Math 6.15 0.06 *** -0.85 0.57 -1.7 0.15 *** -3.61 1.35 ** 5.33 0.13 *** 
Asian 2.54 0.32 *** 0.32 1.56 -1.17 0.52 * 2.08 1.23 . -1.00 0.72
Black 0.02 0.32 -0.17 1.42 -0.37 0.41 1.66 0.92 . -3.15 0.69 ***
Pac. Isl. 0.82 0.66 1.47 2.15 -1.3 2.15 -9.13 11.5 -2.31 0.95 *
Latinx 0.23 0.31 -0.22 1.4 -0.55 0.41 2.41 0.92 ** -2.81 0.69 ***
Multi-racial 0.56 0.34 . -0.67 1.72 -0.28 0.46 3.06 1.06 ** -2.56 0.75 ***
White 0.66 0.31 * -0.03 1.41 -0.48 0.41 2.00 0.91 * -2.66 0.69 ***

Education Policy Analysis Archives  Vol. 28 No. 123     SPECIAL ISSUE       28



How do students experience choice? 29 

Table 9 (continued) 
Coefficients for student level hierarchical logistic regression models specified by Equation 8 
Log-Odds Exit to Trans. SPED to Trans. Exit to Adv. SPED to Adv. SPED To Exit. 

Est. SE Sig. Est. SE Sig. Est. SE Sig. Est. SE Sig. Est. SE Sig. 
Intercept -7.61 4.8 -17.2 <0.01 *** -6.3 2.13 ** -6.22 <0.01 *** -0.13 0.88
Charter 0.75 0.7 -3.14 <0.01 *** 6.71 1.27 *** -7.03 <0.01 *** -0.85 0.17 ***
Econ. Dis. 0.15 0.46 0.21 <0.01 *** 0.95 0.33 ** 1.52 <0.01 *** -0.59 0.17 ***
Gifted -0.52 2.53 -3.25 <0.01 *** -2.61 1.12 * -1.95 <0.01 *** -1.11 0.69
LEP -0.28 0.78 -0.76 <0.01 *** -0.09 0.65 -0.09 <0.01 *** 0.33 0.37 
SPED 2.07 0.51 *** 8.01 <0.01 *** 4.85 0.45 *** 11.51 <0.01 *** 2.96 0.21 *** 
Female -0.22 0.39 0.22 <0.01 *** -0.21 0.26 -0.24 <0.01 *** 0.59 0.16 *** 
MS Math 1.28 1.17 0.21 <0.01 *** -4.19 0.38 *** -9.66 <0.01 *** -3.72 0.45 ***
Asian 3.35 4.84 3.59 <0.01 *** -2.02 2.28 -2.75 <0.01 *** -1.43 1.02
Black 0.61 4.81 1.01 <0.01 *** 0.06 2.09 -2.36 <0.01 *** 1.93 0.89 *
Pac. Isl. -17.7 512 -36.4 <0.01 *** 0.2 3.2 -35.1 <0.01 *** -24.8 52267
Latinx 0.75 4.79 0.86 <0.01 *** -0.41 2.07 -2.75 <0.01 *** 1.85 0.87 *
Multi-racial -0.5 5.78 0.92 <0.01 *** 0.09 2.23 -2.89 <0.01 *** 0.33 0.98 
White 1.67 4.79 0.84 <0.01 *** 0.29 2.07 -2.09 <0.01 *** 0.76 0.87 
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1 



Controlling for school level demographics, school size, and the number of course-taking 
pathways identified within each Texas public school and relative to the odds of offering a “college 
preparatory” course pattern, charter schools are associated with an 86% increase in the likelihood of 
offering advanced course pattern, a 103% increase in the likelihood of offering a basic course 
pattern, a 232% increase in the likelihood of offering course patterns associated with transitions, and 
a 166% increase in the likelihood of offering course patterns associated with exit. These increases 
are all statistically significant. Charter schools are also associated with a 53% decrease in the 
likelihood of offering SPED tracks, but this is not statistically significant at the p < 0.05 level. 

Student level analysis suggests enrollment in a charter school is associated with statistically 
significant increases in the likelihood that a student follows advanced, basic, transition, and exit 
course-patterns relative to the college preparatory course pattern. There is no statistically significant 
difference in the likelihood of a student enrolling in a SPED course pattern relative to a college 
preparatory pattern in charter schools. Relative to a basic course pattern, there is no statistically 
significant difference in the likelihood that a student enrolls in an advanced or SPED pattern; 
however, charter school students are statistically significantly more likely to enroll in exit and 
transition course patterns. The most likely course-patterns for charter school students are associated 
with exit and transition, while the least likely course-patterns for charter school students are the 
college preparatory and SPED course patterns. 

Discussion 

As articulated in the introduction, the goals of this study are twofold: 1) to characterize 
differences in STEM course-taking options between charter and non-charter schools; and 2) to 
examine differences in students’ STEM course-taking patterns in charter and non-charter secondary 
schools. Differences in STEM course-offerings between charter and non-charter schools were 
investigated using school level analyses, while differences in students’ STEM course-taking patterns 
in Texas charter and non-charter schools were investigated using student level analyses comparing 
the probabilities of students enrolling in different sets of STEM courses. A discussion of the primary 
findings related to the two research foci of this study are included in the two following subsections. 

STEM Course-offerings in Charter and Non-charter Public Schools 

Results from the school level statistical analysis herein suggests there are no sector 
differences in the number of course-sequences offered when controlling for school level 
demographics and the size of the cohort population (Equation 6 and Table 5). Although the number 
of individual STEM course-taking patterns was not found to differ between charter and non-charter 
schools in Texas, there are sector differences in the kinds of STEM courses offered. After 
constructing school level sociograms in which schools are connected by the number of STEM 
courses common to each pair of schools, three communities of schools are identified with their 
associated courses listed in Table 3. Relative to the community with the widest range of STEM 
courses offered (comprehensive), charter schools are less likely to offer a set of STEM courses 
tailored for SPED students. That charter schools are less likely to offer SPED course offerings is 
consistent with research indicating that charter schools typically serve fewer percentages of students 
qualifying for SPED services (Estes, 2003; Winters, 2015). There is no statistically significant 
difference in the likelihood of a charter school offering either a comprehensive set of STEM courses 
or courses that are limited to core STEM subjects. 

In contrast to narratives that promote charter schools as educational institutions capable of 
offering novel instruction and curricula, results from the hierarchical model and analysis of the 
school level community detection show that charter schools and non-charter schools are more alike 
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in course-offerings than they are different. Charter schools are not more or less likely than non-
charter schools to offer STEM courses that are minimal, consisting of only staple courses with few 
electives, nor are they more or less likely to offer expansive course offerings, which include both 
advanced STEM courses and STEM courses tailored for SPED students. An important exception is 
that charter schools are less likely than non-charter schools to offer STEM courses that are heavily 
oriented toward SPED students. 

Analyzing results from student level community detection, in which k-means clustering was 
used to group STEM course sets with common attributes, we find the course sets in which charter 
school students enroll are more likely to be “advanced” and “basic” when compared to “college 
preparatory” course-patterns. In addition, STEM course-taking patterns in charter schools are more 
often associated with mobility (transition and exit) than course-taking patterns in non-charter 
schools.  

As studies exploring differences in student achievement have noted, the differences appear 
to be highly contextual. While the finding that charter schools are simultaneously more likely to 
offer “advanced” and “basic” course sequences relative to college preparatory course sequences may 
seem at first counterintuitive, it is possible that the charter schools offering “advanced” course 
sequences are contextually different than charter schools offering “basic” tracks. This is a 
speculation that warrants further consideration and may lend additional insight into the different 
kinds of academic programs offered in various charter schools. Specifically, it may be that charter 
schools target different populations: college preparatory charter schools may target populations who 
are pushed into advanced STEM coursework; whereas other schools—charter schools serving high 
populations of students deemed “at-risk” for dropping out of high school—may offer basic and 
minimal STEM coursework. By contrast, non-charter schools do not have the freedom to recruit 
specific subsets of students and thus do not tailor academic programming to meet the needs of a 
specific subset of students. As such, course-offerings in non-charter schools are broader than those 
in charter schools, as they cater to a more heterogenous student population. 

The statewide analysis of STEM course networks connected by charter and non-charter 
schools help to contextualize this finding. Four sets of courses were identified when connected by 
charter schools, as opposed to three sets of schools when connected by non-charter public schools. 
This is not a robust difference, but it does provide some evidence of sector differences. In the 
statewide analysis, the advanced/college preparatory set of courses in the non-charter school 
network is a hybrid of the distinct advanced and college preparatory sets in the charter school 
network. That this difference is detected when charter and non-charter schools are analyzed 
separately may be due to the fact that there are far more non-charter public schools than charter 
schools in Texas. This finding also suggests students enrolling in charter schools may have more 
options to select between schools with more focused STEM curricula; however, their course-taking 
patterns may be limited after enrolling in these schools. By contrast, non-charter public schools have 
more expansive course-offerings, so there are more course-taking patterns available to students in 
these schools. This finding warrants additional attention and research moving forward.  

STEM Course-taking Patterns in Charter and Non-charter Public Schools 

STEM course-offering differences between charter and non-charter schools as identified 
during school level analyses align with differences in student level STEM course-taking pattern 
differences between charter and non-charter schools in Texas. This is a sensible finding, as course-
offerings within a given school necessarily constrain student course-taking options. Results from 
hierarchical logistic regression models suggest that students in charter schools are more likely 
enrolled in course sequences characterized by high mobility (e.g., transfer and dropping out) than are 
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students in non-charter schools, which makes sense given the premise of school choice. In addition, 
students in charter schools more often take course sequences that have a greater number of 
advanced STEM courses or that are characterized by minimal STEM coursework. Relative to these 
four sets of courses, students in charter schools are less likely to take “college preparatory” STEM 
course-sequences or STEM course-sequences that cater to SPED populations. Potential reasons for 
this are offered in the conclusion. 

These results are consistent with other studies finding that students in charter schools are 
more likely than students in non-charter schools to be enrolled in advanced course sequences 
(Berends & Donaldson, 2016). It is likely that some of the differences observed may vary by each 
school, as different charter schools serve different populations and may very well have different 
course-offerings to meet the needs of these students. 

As articulated in the preceding section, these seemingly contradictory findings may reflect 
school level differences within charter schools. The specific academic programs in some charter 
schools may be tailored such that students take more advanced courses, while the academic 
programs in other schools may serve to give students only basic preparation in STEM. In addition, 
charter school cohorts are smaller than cohorts in non-charter schools. Thus, while course-offerings 
may be more diversified among charter schools than among non-charter schools at the school level, 
which likely reflects the fact that charter schools cater to specific student groups, the course-taking 
patterns within charter schools appear to be more limited than course-taking patterns within non-
charter schools. Considering that charter schools tend to serve student populations who have been 
historically underrepresented in STEM disciplines, that the STEM courses available to students in 
charter schools are more limited than the sets of courses available to students in non-charter 
schools, it is a matter of equity to explore how these differences serve to either promote or hinder 
students’ engagement with stem at post-secondary levels. While charter schools are able to recruit 
students by catering to niche interests, it is important for research to investigate how these curricular 
differences relate to a variety of post-secondary patterns and to better understand whether or not 
the targeted STEM curricula in charter schools translates to positive outcomes for students, 
particularly considering charter schools are more likely to serve student populations who have been 
historically underrepresented in STEM. 

Conclusion 

Our results indicate that charter schools and non-charter schools offer similar STEM 
courses to students, except that charter schools are less likely to have course-offerings tailored for 
SPED students. Despite the similarity in STEM course-offerings in Texas charter and non-charter 
schools, there are sector differences in the students’ course-taking. Of the six groups of course-
sequences identified in this study, charter schools are most likely to offer course-sequences 
associated with mobility (transfer and dropping out), and least likely to offer course-sequences that 
have been defined herein as college preparatory (meaning students take several STEM courses, but 
not advanced electives) and course-sequences tailored for SPED students. Relative to the “college 
preparatory” course sequence, charter schools are more likely to offer tracks characterized by a high 
number of advanced coursework in STEM or characterized by minimal course-taking in STEM. A 
summary of these results is provided in Table 10. 
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Table 10  
High probability STEM course-patterns by sector in Texas 
STEM Course-Sequence Sector 
 Charter Non-Charter 
Advanced √  
Basic √  
College Preparatory  √ 
SPED  √ 
Transfer √  
Exit √  

 
Our results suggest that while general course-offerings between charter and non-charter 

schools may not embody the “innovation” promised by school choice advocates, there are 
differences between charter and non-charter schools in student STEM course-taking patterns, 
namely that students in charter schools take either more advanced STEM courses or more basic 
STEM courses than students in non-charter schools. Investigating these differences more deeply is 
an important next step for research on charter schools. It seems that charter schools provide a 
mechanism by which they cater to certain groups of students rather than following a mandate to 
serve all students. Specifically, future work should explore how programmatic differences between 
charter and non-charter schools are related to differences in student outcomes, such as test score 
increases, college enrollment, or labor market outcomes. Moreover, that charter schools are less 
likely to offer STEM courses tailored for SPED students necessitates that research look into how 
this specific subpopulation of students experiences choice with respect to STEM course-taking. 

In addition, the methods employed in this work offer researchers a way to systematically 
evaluate and characterize the conditions within charter and non-charter schools at a large scale. 
These methods and results can be used to inform other research, including how policy networks 
impact students’ experiences in charter and non-charter schools. The growth of charter schools has 
given wealthy individuals a means by which to gain substantial influence within the public education 
system. Au and Ferrare (2014) document that wealthy individuals use philanthropic organizations to 
advance education policy, and Brandt (1998) argues that policy sponsors offer their support out of 
self-interest. In the current era of school choice, individuals have increased potential to exert 
substantial influence within the public education system, and it is therefore important for researchers 
to consider how this influence manifests for students and the programmatic elements of their 
schools. Are policy sponsors using their influence to promote equitable experiences for students or 
are they using their influence to limit students’ academic programming in a way that aligns with 
individual policy sponsors’ interest?  For example, are individuals and companies in technology 
fields interested in establishing charter schools with increased an increased STEM focus?   

In addition to informing research on policy networks, our results can inform administrators 
and teacher-leaders responsible for deciding course offerings at individual schools. With information 
about the ways in which course-offerings serve to either promote or hinder student participation in 
STEM, and by tying these results to students’ post-secondary course-taking, school leaders can make 
better-informed decisions about which courses should be offered to best promote student success. 
The methods proposed in our work allow researchers to uncover a more nuanced view of student 
options in charter and non-charter schools, and linking this information to the individuals, funding, 
and policies related to certain charter schools has the potential to illuminate the ways in which policy 
networks affect students’ experiences in charter schools. 
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